Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition o...Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition on rhizosphere effects of two C4 grasses:smooth crabgrass(Digitaria ischaemum)and bermudagrass(Cynodon dactylon).Methods Plants were grown in nutrient-poor soil for 80 days with either 20 or 120μg NH4No3-N g dry soil−1.N mineralization rates,microbial biomass,extracellular enzyme activities and bacterial community structure were measured on both rhizosphere and bulk(unplanted)soils after plant harvest.Important Findings Fertilization showed nominal differences in net N mineralization,extracellular enzyme activity and microbial biomass between the rhizosphere and bulk soils,indicating minimal influence of N on rhizosphere effects.Instead,the presence of plant roots showed the strongest impact(up to 80%)on rates of net N mineralization and activities of three soil enzymes indicative of N release from organic matter.Principal component analysis of terminal restriction fragment length polymorphism(t-rFlP)also reflected these trends by highlighting the importance of plant roots in structuring the soil bacterial community,followed by plant species and N fertilization(to a minor extent).overall,the results indicate minor contributions of short-term N fertilization to changes in the magnitude of rhizos-phere effects for both grass species.展开更多
基金United States Department of Agriculture National Institute of Food and Agriculture Hatch program(NYC-145403)the New York State Turfgrass Association and the US Department of Energy,Office of Science,Office of Biological and Environmental Research Terrestrial Ecosystem Science Program(DE-AC02-05CH11231).
文摘Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition on rhizosphere effects of two C4 grasses:smooth crabgrass(Digitaria ischaemum)and bermudagrass(Cynodon dactylon).Methods Plants were grown in nutrient-poor soil for 80 days with either 20 or 120μg NH4No3-N g dry soil−1.N mineralization rates,microbial biomass,extracellular enzyme activities and bacterial community structure were measured on both rhizosphere and bulk(unplanted)soils after plant harvest.Important Findings Fertilization showed nominal differences in net N mineralization,extracellular enzyme activity and microbial biomass between the rhizosphere and bulk soils,indicating minimal influence of N on rhizosphere effects.Instead,the presence of plant roots showed the strongest impact(up to 80%)on rates of net N mineralization and activities of three soil enzymes indicative of N release from organic matter.Principal component analysis of terminal restriction fragment length polymorphism(t-rFlP)also reflected these trends by highlighting the importance of plant roots in structuring the soil bacterial community,followed by plant species and N fertilization(to a minor extent).overall,the results indicate minor contributions of short-term N fertilization to changes in the magnitude of rhizos-phere effects for both grass species.