We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments, retroviral vectors expressing the N29γ or N29ζ receptors were constructed in pRET6. Amphotropic viral produce...We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments, retroviral vectors expressing the N29γ or N29ζ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were virally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal anti- bodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific im- mune responses. Both CM+ and CD8+ T-cells transduced with the N29γ or N29ζ chTCR demonstrated HER2-specific anti- gen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the fea- sibility of adoptive immunotherapy with genetically modified T-cells expressing a chTCR specific for p185HER2.展开更多
We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HEH2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test th...We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HEH2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test the feasibility of chimeric T-cell receptor in a bone marrow transplantation model, we first, made two routine tumor cell lines: MT901 and MCA-205, to express human p185HER2 by retroviral gene transduction. Murine bone marrow cells were retrovirally transduced to express the chimeric T-cell receptor and gene-modified bone marrow cells were transplanted into lethally irradiated mouse. Six months post transplantation, p185HER2-positive tumor ceils: MT-901/HER2 or MCA-205/ HER2 was subcutaneously or intravenously injected to make mouse models simulating primary breast cancer or pulmonary metastasis. The in vivo anti-tumor effects were monitored by the size of the subcutaneous tumor or counting the tumor nodules in the lungs after India ink staining. The size of the subcutaneous tumor was significantly inhibited and the number of pulmonary nodules were significantly decreased in mouse recipients transplanted with chimeric T-cell receptor modified bone marrow cells compared with the control group. Our results suggest the efficient in vivo anti-tumor activities of chimeric T-cell receptor gene modified bone marrow cells.展开更多
文摘We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments, retroviral vectors expressing the N29γ or N29ζ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were virally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal anti- bodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific im- mune responses. Both CM+ and CD8+ T-cells transduced with the N29γ or N29ζ chTCR demonstrated HER2-specific anti- gen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the fea- sibility of adoptive immunotherapy with genetically modified T-cells expressing a chTCR specific for p185HER2.
文摘We have confirmed efficient anti-tumor activities of the peripheral lymphocytes transduced with a p185HEH2-specific chimeric T-cell receptor gene both in murine and in human in our previous studies. To further test the feasibility of chimeric T-cell receptor in a bone marrow transplantation model, we first, made two routine tumor cell lines: MT901 and MCA-205, to express human p185HER2 by retroviral gene transduction. Murine bone marrow cells were retrovirally transduced to express the chimeric T-cell receptor and gene-modified bone marrow cells were transplanted into lethally irradiated mouse. Six months post transplantation, p185HER2-positive tumor ceils: MT-901/HER2 or MCA-205/ HER2 was subcutaneously or intravenously injected to make mouse models simulating primary breast cancer or pulmonary metastasis. The in vivo anti-tumor effects were monitored by the size of the subcutaneous tumor or counting the tumor nodules in the lungs after India ink staining. The size of the subcutaneous tumor was significantly inhibited and the number of pulmonary nodules were significantly decreased in mouse recipients transplanted with chimeric T-cell receptor modified bone marrow cells compared with the control group. Our results suggest the efficient in vivo anti-tumor activities of chimeric T-cell receptor gene modified bone marrow cells.