期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Interface strain engineering of Ir clusters on ultrathin NiO nanosheets for electrochemical water splitting over 1800 hours
1
作者 Binyu Zhang Weiwei Li +9 位作者 kexi zhanga Jingtao Gao Yang Cao Yuqian Cheng Delun Chen Qiang Wu Lei Ding Jinchun Tu Xiaolin Zhang Chenghua Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第10期214-223,共10页
Strain engineering of two-dimensional(2D)material interfaces represents a powerful strategy for enhanc-ing the electrocatalytic activity of water splitting.However,maintaining catalytic stability under various harsh c... Strain engineering of two-dimensional(2D)material interfaces represents a powerful strategy for enhanc-ing the electrocatalytic activity of water splitting.However,maintaining catalytic stability under various harsh conditions by introducing interface strain remains a great challenge.The catalyst developed and evaluated herein comprised Ir clusters dispersed on 2D NiO nanosheets(NSs)derived from metal organic frameworks(lr@NiO/C_(BDc)),which displays a high activity and stability under all pH conditions,and even a change of only 1%in the applied voltage is observed after continuous electrocatalytic operation for over 1800 h under alkaline conditions.Through combined experimental and computational studies,we found that the introduced interfacial strain contributes to the outstanding structural stability of the Ir@NiO/CBDC catalyst,arising from its increased Ir and Ni vacancy formation energies,and hence suppressing its leach-ing.Moreover,strain also enhances the kinetically sluggish electrocatalytic water splitting reaction by op-timizing its electronic structure and coordination environment.This work highlights the effects of strain on catalyst stability and provides new insights for designing widely applicable electrocatalysts. 展开更多
关键词 Strain engineering Stability ELECTROCATALYSTS Two-dimensional material Water splitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部