Enhancing traffic efficiency and alleviating(even circumventing) traffic congestion with advanced traffic signal control(TSC) strategies are always the main issues to be addressed in urban transportation systems. Sinc...Enhancing traffic efficiency and alleviating(even circumventing) traffic congestion with advanced traffic signal control(TSC) strategies are always the main issues to be addressed in urban transportation systems. Since model predictive control(MPC) has a lot of advantages in modeling complex dynamic systems, it has been widely studied in traffic signal control over the past 20 years. There is a need for an in-depth understanding of MPC-based TSC methods for traffic networks. Therefore, this paper presents the motivation of using MPC for TSC and how MPC-based TSC approaches are implemented to manage and control the dynamics of traffic flows both in urban road networks and freeway networks. Meanwhile, typical performance evaluation metrics, solution methods, examples of simulations,and applications related to MPC-based TSC approaches are reported. More importantly, this paper summarizes the recent developments and the research trends in coordination and control of traffic networks with MPC-based TSC approaches. Remaining challenges and open issues are discussed towards the end of this paper to discover potential future research directions.展开更多
Driver state sensing technologies, such as vehicular systems, start to be widely considered by automotive manufacturers. To reduce the cost and minimize the intrusiveness towards driving, the majority of these systems...Driver state sensing technologies, such as vehicular systems, start to be widely considered by automotive manufacturers. To reduce the cost and minimize the intrusiveness towards driving, the majority of these systems rely on the in-cabin camera(s) and other optical sensors. With their great capabilities in detecting and intervening of driver distraction and inattention,these technologies may become key components in future vehicle safety and control systems. However, to the best of our knowledge,currently, there is no common standard available to objectively compare the performance of these technologies. Thus, it is imperative to develop one standardized process for evaluation purposes.In this paper, we propose one systematic and standardized evaluation process after successfully addressing three difficulties:1) defining and selecting the important influential individual and environmental factors, 2) countering the effects of individual differences and randomness in driver behaviors, and 3) building a reliable in-vehicle driver head motion tracking tool to collect ground-truth motion data. We have collected data on a large scale on a commercial driver state-sensing platform. For each subject, 30 to 40 minutes of head motion data was collected and included variables, such as lighting conditions, head/face features,and camera locations. The collected data was analyzed based on a proposed performance measure. The results show that the developed process can efficiently evaluate an individual camerabased driver state sensing product, which builds a common base for comparing the performance of different systems.展开更多
基金supported in part by the National Natural Science Foundation of China(61603154,61773343,61621002,61703217)the Natural Science Foundation of Zhejiang Province(LY15F030021,LY19F030014)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(ICT1800407)
文摘Enhancing traffic efficiency and alleviating(even circumventing) traffic congestion with advanced traffic signal control(TSC) strategies are always the main issues to be addressed in urban transportation systems. Since model predictive control(MPC) has a lot of advantages in modeling complex dynamic systems, it has been widely studied in traffic signal control over the past 20 years. There is a need for an in-depth understanding of MPC-based TSC methods for traffic networks. Therefore, this paper presents the motivation of using MPC for TSC and how MPC-based TSC approaches are implemented to manage and control the dynamics of traffic flows both in urban road networks and freeway networks. Meanwhile, typical performance evaluation metrics, solution methods, examples of simulations,and applications related to MPC-based TSC approaches are reported. More importantly, this paper summarizes the recent developments and the research trends in coordination and control of traffic networks with MPC-based TSC approaches. Remaining challenges and open issues are discussed towards the end of this paper to discover potential future research directions.
基金supported by Ford Motor Company Research and Innovation Center
文摘Driver state sensing technologies, such as vehicular systems, start to be widely considered by automotive manufacturers. To reduce the cost and minimize the intrusiveness towards driving, the majority of these systems rely on the in-cabin camera(s) and other optical sensors. With their great capabilities in detecting and intervening of driver distraction and inattention,these technologies may become key components in future vehicle safety and control systems. However, to the best of our knowledge,currently, there is no common standard available to objectively compare the performance of these technologies. Thus, it is imperative to develop one standardized process for evaluation purposes.In this paper, we propose one systematic and standardized evaluation process after successfully addressing three difficulties:1) defining and selecting the important influential individual and environmental factors, 2) countering the effects of individual differences and randomness in driver behaviors, and 3) building a reliable in-vehicle driver head motion tracking tool to collect ground-truth motion data. We have collected data on a large scale on a commercial driver state-sensing platform. For each subject, 30 to 40 minutes of head motion data was collected and included variables, such as lighting conditions, head/face features,and camera locations. The collected data was analyzed based on a proposed performance measure. The results show that the developed process can efficiently evaluate an individual camerabased driver state sensing product, which builds a common base for comparing the performance of different systems.