Transmission of electromagnetic waves through a Si-based one dimensional photonic crystal has been investigated. The proposed structure works as an omni-directional reflector for a certain range of wavelength for an a...Transmission of electromagnetic waves through a Si-based one dimensional photonic crystal has been investigated. The proposed structure works as an omni-directional reflector for a certain range of wavelength for an angle of incidence up to 55?. The structure works as a narrow band TM-polarization filter for an angle of incidence more than 55?, i.e. a filter which completely blocks TE-polarized waves but allows certain wavelengths of TM-polarized waves. But at an angle of incidence of 89?, the structure works as a multiple narrow band TM-polarization filter even though no defect layer is introduced inside the structure. It is also found that this multiple narrow pass-bands of TM-polarized waves can be tuned to a desired range of wavelength by changing the temperature of the structure.展开更多
文摘Transmission of electromagnetic waves through a Si-based one dimensional photonic crystal has been investigated. The proposed structure works as an omni-directional reflector for a certain range of wavelength for an angle of incidence up to 55?. The structure works as a narrow band TM-polarization filter for an angle of incidence more than 55?, i.e. a filter which completely blocks TE-polarized waves but allows certain wavelengths of TM-polarized waves. But at an angle of incidence of 89?, the structure works as a multiple narrow band TM-polarization filter even though no defect layer is introduced inside the structure. It is also found that this multiple narrow pass-bands of TM-polarized waves can be tuned to a desired range of wavelength by changing the temperature of the structure.