期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Measurement of Natural Radioactivity and Radon Exhalation Rate in Coal Ash Samples from a Thermal Power Plant 被引量:1
1
作者 Aziz Boukhair Laila Belahbib +3 位作者 khadija azkour Hamid Nebdi Mohammed Benjelloun Abdelmjid Nourreddine 《World Journal of Nuclear Science and Technology》 2016年第3期153-160,共8页
Coal is the main energy source for electricity generation in the world. In Morocco, 37% of electricity generation comes from combustion coal in thermal power plants. This combustion process generates large amounts of ... Coal is the main energy source for electricity generation in the world. In Morocco, 37% of electricity generation comes from combustion coal in thermal power plants. This combustion process generates large amounts of fly and bottom ashes. In recent years, these ashes became a great topic of interest because of their different uses and especially in construction materials. In this work, we assess radiation risks due to natural radioactivity in samples of fly and bottom ashes collected from JLEC (Jorf Lasfar Energy Company) thermal power plant, and different analyses are performed through two nuclear techniques such as gamma spectrometry and alpha dosimetry based on the use of LR115 films detectors. Our analysis shows that <sup>226</sup>Ra activities and <sup>232</sup>Th in both ash samples are well above the permissible activity. The values of the external risk index (H<sub>ex</sub>) and internal one (H<sub>in</sub>) for these ashes are below unity, with the exception of 1.28 in fly ash for H<sub>in</sub>. The obtained values for the equivalent radium Ra<sub>eq</sub> and annual effective doses &#278;in fly and bottom ashes are 324 Bq/kg and 210 Bq/kg, and 0.18 mSv/y and 0.11 mSv/y, respectively. The surface radon exhalation rates for the samples of fly and bottom ashes are 276 mBq&sdot;m<sup>-2</sup>&sdot;h<sup>-1</sup> and 381 mBq&sdot;m<sup>-2</sup>&sdot;h<sup>-1</sup>, respectively. Based on these results, we have shown that fly ash and bottom one from thermal power plant JLEC didn’t have, in any case, a health risk to the public so it can be effectively used in various construction activities. 展开更多
关键词 Natural Radioactivity Gamma Spectrometry LR115 Fly Ash Bottom Ash Equivalent Radium Annual Effective Doses Exhalation of Radon
下载PDF
Assessment of the Radiological Impact on the Environment near a Storage Site of Coal Ashes in a Thermal Power Plant
2
作者 Aziz Boukhair Laila Belahbib +3 位作者 khadija azkour Hamid Nebdi Mohammed Benjelloun Abdelmjid Nourreddine 《World Journal of Nuclear Science and Technology》 2016年第4期206-216,共11页
The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of sev... The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l. 展开更多
关键词 Storage Site Coal Ashes Environment Radiological Impact Soil Water Atmospheric Air LR115 RADON Volumetric Activity Exhalation of Radon
下载PDF
Assessment of Exposure Due to Technologically Enhanced Natural Radioactivity in Various Samples of Moroccan Building Materials
3
作者 Bouchaib Kassi Aziz Boukhair +3 位作者 khadija azkour Mohamed Fahad Mohammed Benjelloun Abdel-Mjid Nourreddine 《World Journal of Nuclear Science and Technology》 2018年第4期176-189,共14页
The aim of our present work is to measure the specific activities of the radionuclides 226Ra, 232Th, 40K and the exhalation rates in terms of area and mass of 222Rn in some samples of building materials commonly used ... The aim of our present work is to measure the specific activities of the radionuclides 226Ra, 232Th, 40K and the exhalation rates in terms of area and mass of 222Rn in some samples of building materials commonly used in Morocco in order to evaluate the radiological risk caused by natural radioactivity. To this end, the analyses were carried out, using two nuclear techniques, namely high resolution gamma spectrometry and alpha dosimetry based on the use of LR115, on 50 samples collected from large commercial suppliers in Morocco. The results of these analyses show that the average specific activities of 226Ra, 232Th and 40K in these materials vary from 9 to 52 Bq/kg, 3 to 63 Bq/kg and 68 to 705 Bq/kg respectively. These activities remain within the permissible limits of 35 Bq/kg, 30 Bq/kg and 370 Bq/kg respectively, with the exception of a few samples of red brick, gray cement, ceramic and granite. The activity of the radium equivalent (Raeq), the internal (Hin) and external (Hex) hazard indices, the absorbed dose rate, the total annual effective dose , the excess lifetime cancer risk (ELCR) as well as volumic activities, exhalation rates in terms of area (ES) and mass (EM) are calculated for the samples analyzed in this work in order to assess the radiological risks resulting from the use of these materials in various construction activities. It seems that the values of these indices vary from 19 to 196 Bq/kg, 0.08 to 0.67, 0.05 to 0.53, 9 to 91 nGy/h, 0.05 to 0.56 mSv/y, 0.19 × 10&minus;3 to 1.96 × 10&minus;3, 72 to 350 Bq/m3, 56 to 273 mBq&sdot;m&minus;2&sdot;h&minus;1 and 3 to 15 mBq&sdot;kg&minus;1&sdot;h&minus;1 respectively. The lowest values are identified for gypsum, while the highest are attributed to granite. All of the obtained results of these indices respect the permissible limits except for the Raeq in some granite samples, the ELCR index in all samples except gypsum and the radon volumic activity in some gray cement samples, ceramic and granite. As a result, the different types of building materials analyzed in our work do not present a health risk to the public and can be used in various construction activities, with the exception of a few samples of red brick, gray cement, ceramic and granite. The choice of the use of red brick, gray cement and ceramic should be monitored and adapted according to the criteria of the limitation of the doses whereas the use of the granite must be moderate in order to limit over time the health risk which increases with the duration of exposure of humans to these building materials. 展开更多
关键词 Building Materials Natural RADIOACTIVITY RADIONUCLIDE RADON EXHALATION Rate RADIUM Equivalent Annual Effective Dose
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部