Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance o...Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance of the mechanical bolts in coal ribs.Researchers from the National Institute for Occupational Safety and Health(NIOSH)conducted this work to understand the loading characteristics of mechanical bolts(stiffness and capacity)installed in coal ribs at five underground coal mines.Standard pull-out tests were performed in this study to define the loading characteristics of mechanical rib bolts.Different installation torques were applied to the tested bolts based on the strength of the coal seam.A typical tri-linear load-deformation response for mechanical bolts was obtained from these tests.It was found that the anchorage capacity depended mainly on the coal strength.Guidelines for modeling mechanical bolts have been developed using the tri-linear load-deformation response.The outcome of this research provides essential data for rib support design.展开更多
In 2016, room-and-pillar mining provided nearly 40% of underground coal production in the United States.Over the past decade, rib falls have resulted in 12 fatalities, representing 28% of the ground fall fatalities in...In 2016, room-and-pillar mining provided nearly 40% of underground coal production in the United States.Over the past decade, rib falls have resulted in 12 fatalities, representing 28% of the ground fall fatalities in U.S.underground coal mines.Nine of these 12 fatalities(75%) have occurred in room-andpillar mines.The objective of this research is to study the geomechanics of bench room-and-pillar mining and the associated response of high pillar ribs at overburden depths greater than 300 m.This paper provides a definition of the bench technique, the pillar response due to loading, observational data for a case history, a calibrated numerical model of the observed rib response, and application of this calibrated model to a second site.展开更多
Researchers from the National Institute for Occupational Safety and Health(NIOSH)are developing a coal pillar rib rating(CPRR)technique to measure the integrity of coal ribs.The CPRR characterizes the rib composition ...Researchers from the National Institute for Occupational Safety and Health(NIOSH)are developing a coal pillar rib rating(CPRR)technique to measure the integrity of coal ribs.The CPRR characterizes the rib composition and evaluates its impact on the inherent stability of the coal ribs.The CPRR utilizes four parameters:rib homogeneity,bedding condition,face cleat orientation with respect to entry direction,and rib height.All these parameters are measurable in the field.A rib data collecting procedure and a simple sheet to calculate the CPRR were developed.The developed CPRR can be used as a rib quality mapping tool in underground coal mines and to determine the potential of local rib instabilities and support requirements associated with overburden depth.CPRR calculations were conducted for 22 surveyed solid coal ribs,mainly composed of coal units.Based on this study,the rib performance was classified into four categories.A preliminary minimum primary rib support density(PRSD)line was obtained from these surveyed cases.Two sample cases are presented that illustrate the data collection form and CPRR calculations.展开更多
The National Institute for Occupational Safety and Health(NIOSH)conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia.The deformation and the stress change in an instrumen...The National Institute for Occupational Safety and Health(NIOSH)conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia.The deformation and the stress change in an instrumented pillar were monitored during the progress of pillar retreat mining at two sites of different geological conditions and depths of cover.The main objectives of the monitoring program were to better understand the stress transfer and load shedding on coal pillars and to quantify the rib deformation due to pillar retreat mining;and to examine the effect of rib geology and overburden depth on coal rib performance.The instrumentation at both sites included pull-out tests to measure the anchorage capacity of rib bolts,load cells mounted on rib bolts to monitor the induced loads in the bolts,borehole pressure cells(BPCs)installed at various depths in the study pillar to measure the change in vertical pressure within the pillar,and roof and rib extensometers installed to quantify the vertical displacement of the roof and the horizontal displacement of the rib that would occur during the retreat mining process.The outcome from the monitoring program provides insight into coal pillar rib support optimization at various depths and geological conditions.Also,this study contributes to the NIOSH rib support database in U.S coal mines and provides essential data for rib support design.展开更多
The instability of coal ribs in underground mines continues to result in the injuries and fatalities of mine workers.The proper esti-mation and evaluation of primary and secondary support for coal ribs is still a chal...The instability of coal ribs in underground mines continues to result in the injuries and fatalities of mine workers.The proper esti-mation and evaluation of primary and secondary support for coal ribs is still a challenging problem in the field of ground control science and requires further research and study.Although mining operations have various support design criteria and support methodologies for strata control,most rib support designs are still based on experience and local practices.This review study is intended to summarize the currently applied practices for rib support and control in various countries and mining conditions.Firstly,critical parameters that con-trol the amount and type of required rib support are considered and evaluated.The study revealed that among these parameters that control the stability of coal ribs,mining depth,rib height,cleat orientation/condition,and coal strength are the most significant param-eters.Secondly,current rib support application methods were also summarized.Similar to rock mass classification systems,some studies proposed a rib control rating system for practical estimation of the current rib condition and to estimate primary support requirements.These studies are classified and summarized into two groups(categorical and empirical)based on the required inputs and methodologies.Empirically based coal rib rating systems were closely examined,and the usefulness and intuitive aspects of each rating system were com-pared.This comprehensive literature review demonstrates that the Australian rating system,Analysis and Design of Rib Support(ADRS),and the new U.S.rating system,Coal Pillar Rib Rating(CPRR),are highly applicable for their regions.展开更多
文摘Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance of the mechanical bolts in coal ribs.Researchers from the National Institute for Occupational Safety and Health(NIOSH)conducted this work to understand the loading characteristics of mechanical bolts(stiffness and capacity)installed in coal ribs at five underground coal mines.Standard pull-out tests were performed in this study to define the loading characteristics of mechanical rib bolts.Different installation torques were applied to the tested bolts based on the strength of the coal seam.A typical tri-linear load-deformation response for mechanical bolts was obtained from these tests.It was found that the anchorage capacity depended mainly on the coal strength.Guidelines for modeling mechanical bolts have been developed using the tri-linear load-deformation response.The outcome of this research provides essential data for rib support design.
文摘In 2016, room-and-pillar mining provided nearly 40% of underground coal production in the United States.Over the past decade, rib falls have resulted in 12 fatalities, representing 28% of the ground fall fatalities in U.S.underground coal mines.Nine of these 12 fatalities(75%) have occurred in room-andpillar mines.The objective of this research is to study the geomechanics of bench room-and-pillar mining and the associated response of high pillar ribs at overburden depths greater than 300 m.This paper provides a definition of the bench technique, the pillar response due to loading, observational data for a case history, a calibrated numerical model of the observed rib response, and application of this calibrated model to a second site.
文摘Researchers from the National Institute for Occupational Safety and Health(NIOSH)are developing a coal pillar rib rating(CPRR)technique to measure the integrity of coal ribs.The CPRR characterizes the rib composition and evaluates its impact on the inherent stability of the coal ribs.The CPRR utilizes four parameters:rib homogeneity,bedding condition,face cleat orientation with respect to entry direction,and rib height.All these parameters are measurable in the field.A rib data collecting procedure and a simple sheet to calculate the CPRR were developed.The developed CPRR can be used as a rib quality mapping tool in underground coal mines and to determine the potential of local rib instabilities and support requirements associated with overburden depth.CPRR calculations were conducted for 22 surveyed solid coal ribs,mainly composed of coal units.Based on this study,the rib performance was classified into four categories.A preliminary minimum primary rib support density(PRSD)line was obtained from these surveyed cases.Two sample cases are presented that illustrate the data collection form and CPRR calculations.
基金The authors want to thank Todd Minoski for preparing the data collection system and James Addis and Cynthia Hollerich for help with installing the test instruments.
文摘The National Institute for Occupational Safety and Health(NIOSH)conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia.The deformation and the stress change in an instrumented pillar were monitored during the progress of pillar retreat mining at two sites of different geological conditions and depths of cover.The main objectives of the monitoring program were to better understand the stress transfer and load shedding on coal pillars and to quantify the rib deformation due to pillar retreat mining;and to examine the effect of rib geology and overburden depth on coal rib performance.The instrumentation at both sites included pull-out tests to measure the anchorage capacity of rib bolts,load cells mounted on rib bolts to monitor the induced loads in the bolts,borehole pressure cells(BPCs)installed at various depths in the study pillar to measure the change in vertical pressure within the pillar,and roof and rib extensometers installed to quantify the vertical displacement of the roof and the horizontal displacement of the rib that would occur during the retreat mining process.The outcome from the monitoring program provides insight into coal pillar rib support optimization at various depths and geological conditions.Also,this study contributes to the NIOSH rib support database in U.S coal mines and provides essential data for rib support design.
文摘The instability of coal ribs in underground mines continues to result in the injuries and fatalities of mine workers.The proper esti-mation and evaluation of primary and secondary support for coal ribs is still a challenging problem in the field of ground control science and requires further research and study.Although mining operations have various support design criteria and support methodologies for strata control,most rib support designs are still based on experience and local practices.This review study is intended to summarize the currently applied practices for rib support and control in various countries and mining conditions.Firstly,critical parameters that con-trol the amount and type of required rib support are considered and evaluated.The study revealed that among these parameters that control the stability of coal ribs,mining depth,rib height,cleat orientation/condition,and coal strength are the most significant param-eters.Secondly,current rib support application methods were also summarized.Similar to rock mass classification systems,some studies proposed a rib control rating system for practical estimation of the current rib condition and to estimate primary support requirements.These studies are classified and summarized into two groups(categorical and empirical)based on the required inputs and methodologies.Empirically based coal rib rating systems were closely examined,and the usefulness and intuitive aspects of each rating system were com-pared.This comprehensive literature review demonstrates that the Australian rating system,Analysis and Design of Rib Support(ADRS),and the new U.S.rating system,Coal Pillar Rib Rating(CPRR),are highly applicable for their regions.