In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutio...In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation(CEWE) and the space-time fractional coupled modified equal width wave equation(CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels.展开更多
In the present paper, the two-dimensional quantum Zakharov-Kuznetsov(QZK) equation, three-dimensional quantum Zakharov-Kuznetsov equation and the three-dimensional modified quantum Zakharov-Kuznetsov equation are anal...In the present paper, the two-dimensional quantum Zakharov-Kuznetsov(QZK) equation, three-dimensional quantum Zakharov-Kuznetsov equation and the three-dimensional modified quantum Zakharov-Kuznetsov equation are analytically investigated for exact solutions using the modified extended tanh-expansion based method. A variety of new and important soliton solutions are obtained including the dark soliton solution, singular soliton solution, combined dark-singular soliton solution and many other trigonometric function solutions. The used method is implemented on the Mathematica software for the computations as well as the graphical illustrations.展开更多
文摘In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation(CEWE) and the space-time fractional coupled modified equal width wave equation(CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels.
文摘In the present paper, the two-dimensional quantum Zakharov-Kuznetsov(QZK) equation, three-dimensional quantum Zakharov-Kuznetsov equation and the three-dimensional modified quantum Zakharov-Kuznetsov equation are analytically investigated for exact solutions using the modified extended tanh-expansion based method. A variety of new and important soliton solutions are obtained including the dark soliton solution, singular soliton solution, combined dark-singular soliton solution and many other trigonometric function solutions. The used method is implemented on the Mathematica software for the computations as well as the graphical illustrations.