In the current research work Ba_(1-x)La)xMn)yFe_(12-y)O_(19) hexa-ferrite nanoparticles of different compositions were synthesized using chemical co-precipitation technique. The structural properties were explored usi...In the current research work Ba_(1-x)La)xMn)yFe_(12-y)O_(19) hexa-ferrite nanoparticles of different compositions were synthesized using chemical co-precipitation technique. The structural properties were explored using X-ray diffractions(XRD), scanning electron microscopy(SEM) and Fourier transmission infrared spectroscopy(FTIR). XRD indexed pattern confirms the formation of M-type hexagonal phase. The crystallite size of synthesized samples ranges from 13 to 34 ± 2 nm. FTIR peaks observe also confirmed the presence of metaloxygen bond of the desired product. The position of peak at 467 cm^(-1) corresponds to A_2 u vibration for octahedral Fe(4+)-O and peak position E1 u corresponds to vibration of Fe(3+)O4 octahedral bonds. The band v_1 in range(677-559 cm^(-1)) and v_2 in frequency range(356-419 cm^(-1)) are associated to A and B sites.Dielectric properties of all compositions were measured with frequency. The dielectric constant, loss and tangent loss decrease from 26 to 9, 25 to 2 and 0.94 to 0.14, respectively with frequency. DC electrical resistivity is increased with dopant concentration increasing from 2.15 × 10~4 to 1.92 ×10~5 Ω·cm.展开更多
基金Project supported by Higher Education Commission(HEC)Pakistan(1326,6018)
文摘In the current research work Ba_(1-x)La)xMn)yFe_(12-y)O_(19) hexa-ferrite nanoparticles of different compositions were synthesized using chemical co-precipitation technique. The structural properties were explored using X-ray diffractions(XRD), scanning electron microscopy(SEM) and Fourier transmission infrared spectroscopy(FTIR). XRD indexed pattern confirms the formation of M-type hexagonal phase. The crystallite size of synthesized samples ranges from 13 to 34 ± 2 nm. FTIR peaks observe also confirmed the presence of metaloxygen bond of the desired product. The position of peak at 467 cm^(-1) corresponds to A_2 u vibration for octahedral Fe(4+)-O and peak position E1 u corresponds to vibration of Fe(3+)O4 octahedral bonds. The band v_1 in range(677-559 cm^(-1)) and v_2 in frequency range(356-419 cm^(-1)) are associated to A and B sites.Dielectric properties of all compositions were measured with frequency. The dielectric constant, loss and tangent loss decrease from 26 to 9, 25 to 2 and 0.94 to 0.14, respectively with frequency. DC electrical resistivity is increased with dopant concentration increasing from 2.15 × 10~4 to 1.92 ×10~5 Ω·cm.