The Robogymnast is a highly complex,three-link system based on the triple-inverted pendulum and is modelled on the human example of a gymnast suspended by their hands from the high bar and executing larger and larger ...The Robogymnast is a highly complex,three-link system based on the triple-inverted pendulum and is modelled on the human example of a gymnast suspended by their hands from the high bar and executing larger and larger upswings to eventually rotate fully.The links of the Robogymnast correspond respectively to the arms,trunk,and lower limbs of the gymnast,and from its three joints,one is under passive operation,while the remaining two are powered.The passive top joint poses severe challenges in attaining the smooth movement control needed to operate the Robogymnast effectively.This study assesses four types of controllers used for systems operation and identifies how far response stabilisation is achieved with each.The system is simulated using MATLAB Simulink,with findings generated regarding rising and settling time,as well as overshoot.The research primarily seeks to exam-ine the application of a linear quadratic regulator controller,proportional-integral-derivative controller,fuzzy linear quadratic regulator controller and linear quadratic regulator-proportional-integral-derivative controller for this type of system and comparisons between the different controllers to demon-strate successful performance,which highlights the claimed advantages of the proposed system.展开更多
The Internet of Things(IoT)and cloud technologies have encouraged massive data storage at central repositories.Software-defined networks(SDN)support the processing of data and restrict the transmission of duplicate va...The Internet of Things(IoT)and cloud technologies have encouraged massive data storage at central repositories.Software-defined networks(SDN)support the processing of data and restrict the transmission of duplicate values.It is necessary to use a data de-duplication mechanism to reduce communication costs and storage overhead.Existing State of the art schemes suffer from computational overhead due to deterministic or random tree-based tags generation which further increases as the file size grows.This paper presents an efficient file-level de-duplication scheme(EFDS)where the cost of creating tags is reduced by employing a hash table with key-value pair for each block of the file.Further,an algorithm for hash table-based duplicate block identification and storage(HDBIS)is presented based on fingerprints that maintain a linked list of similar duplicate blocks on the same index.Hash tables normally have a consistent time complexity for lookup,generating,and deleting stored data regardless of the input size.The experiential results show that the proposed EFDS scheme performs better compared to its counterparts.展开更多
The design of green cellular networking according to the trafc arrivals has the capability to reduce the overall energy consumption to a cluster in a cost-effective way.The cell zooming approach has appealed much atte...The design of green cellular networking according to the trafc arrivals has the capability to reduce the overall energy consumption to a cluster in a cost-effective way.The cell zooming approach has appealed much attention that adaptively ofoads the BS load demands adjusting the transmit power based on the trafc intensity and green energy availability.Besides,the researchers are focused on implementing renewable energy resources,which are considered the most attractive practices in designing energy-efcient wireless networks over the long term in a cost-efcient way in the existing infrastructure.The utilization of available solar can be adapted to acquire cost-effective and reliable power supply to the BSs,especially that sunlight is free,available everywhere,and a good alternative energy option for the remote areas.Nevertheless,planning a photovoltaic scheme necessitates viability assessment to avoid poor power supply,particularly for BSs.Therefore,cellular operators need to consider both technical and economic factors before the implementation of solar-powered BSs.This paper proposed the usercentric cell zooming policy of solar-powered cellular base stations taking into account the optimal technical criteria obtained by the HOMER software tool.The results have shown that the proposed system can provide operational expenditure(OPEX)savings of up to 47%.In addition,the efcient allocation of resource blocks(RBs)under the cell zooming technique attain remarkable energy-saving performance yielding up to 27%.展开更多
文摘The Robogymnast is a highly complex,three-link system based on the triple-inverted pendulum and is modelled on the human example of a gymnast suspended by their hands from the high bar and executing larger and larger upswings to eventually rotate fully.The links of the Robogymnast correspond respectively to the arms,trunk,and lower limbs of the gymnast,and from its three joints,one is under passive operation,while the remaining two are powered.The passive top joint poses severe challenges in attaining the smooth movement control needed to operate the Robogymnast effectively.This study assesses four types of controllers used for systems operation and identifies how far response stabilisation is achieved with each.The system is simulated using MATLAB Simulink,with findings generated regarding rising and settling time,as well as overshoot.The research primarily seeks to exam-ine the application of a linear quadratic regulator controller,proportional-integral-derivative controller,fuzzy linear quadratic regulator controller and linear quadratic regulator-proportional-integral-derivative controller for this type of system and comparisons between the different controllers to demon-strate successful performance,which highlights the claimed advantages of the proposed system.
基金supported in part by Hankuk University of Foreign Studies’Research Fund for 2023 and in part by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT Korea No.2021R1F1A1045933.
文摘The Internet of Things(IoT)and cloud technologies have encouraged massive data storage at central repositories.Software-defined networks(SDN)support the processing of data and restrict the transmission of duplicate values.It is necessary to use a data de-duplication mechanism to reduce communication costs and storage overhead.Existing State of the art schemes suffer from computational overhead due to deterministic or random tree-based tags generation which further increases as the file size grows.This paper presents an efficient file-level de-duplication scheme(EFDS)where the cost of creating tags is reduced by employing a hash table with key-value pair for each block of the file.Further,an algorithm for hash table-based duplicate block identification and storage(HDBIS)is presented based on fingerprints that maintain a linked list of similar duplicate blocks on the same index.Hash tables normally have a consistent time complexity for lookup,generating,and deleting stored data regardless of the input size.The experiential results show that the proposed EFDS scheme performs better compared to its counterparts.
基金supported by SUT Research and Development Fundsupported by the Deanship of Scientic Research at Prince Sattam bin Abdulaziz University,Saudi Arabia.
文摘The design of green cellular networking according to the trafc arrivals has the capability to reduce the overall energy consumption to a cluster in a cost-effective way.The cell zooming approach has appealed much attention that adaptively ofoads the BS load demands adjusting the transmit power based on the trafc intensity and green energy availability.Besides,the researchers are focused on implementing renewable energy resources,which are considered the most attractive practices in designing energy-efcient wireless networks over the long term in a cost-efcient way in the existing infrastructure.The utilization of available solar can be adapted to acquire cost-effective and reliable power supply to the BSs,especially that sunlight is free,available everywhere,and a good alternative energy option for the remote areas.Nevertheless,planning a photovoltaic scheme necessitates viability assessment to avoid poor power supply,particularly for BSs.Therefore,cellular operators need to consider both technical and economic factors before the implementation of solar-powered BSs.This paper proposed the usercentric cell zooming policy of solar-powered cellular base stations taking into account the optimal technical criteria obtained by the HOMER software tool.The results have shown that the proposed system can provide operational expenditure(OPEX)savings of up to 47%.In addition,the efcient allocation of resource blocks(RBs)under the cell zooming technique attain remarkable energy-saving performance yielding up to 27%.