期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ca^(2+)-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca^(2+)entry after spinal cord injury
1
作者 Spencer Ames kia adams +1 位作者 Mariah E.Geisen David P.Stirling 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2720-2726,共7页
The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse s... The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca^(2+).We performed twophoton excitation imaging of spinal cords isolated from Thy1YFP+transgenic mice and applied the lipophilic dye,Nile red,to record dynamic changes in dorsal column axons and their myelin sheaths respectively.We selectively released Ca^(2+)from internal stores using the Ca^(2+)ionophore ionomycin in the presence or absence of external Ca^(2+).We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 m M Ca^(2+)artificial cerebrospinal fluid.In contrast,removal of external Ca^(2+)significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment.Using mice that express a neuron-specific Ca^(2+)indicator in spinal cord axons,we confirmed that ionomycin induced significant increases in intra-axonal Ca^(2+),but not in the absence of external Ca^(2+).Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation.Pretreatment with YM58483(500 n M),a well-established blocker of store-operated Ca^(2+)entry,significantly decreased myelin injury and axonal spheroid formation.Collectively,these data reveal that ionomycin-induced depletion of internal Ca^(2+)stores and subsequent external Ca^(2+)entry through store-operated Ca^(2+)entry contributes to pathological changes in myelin and axonal spheroid formation,providing new targets to protect central myelinated fibers. 展开更多
关键词 axonal degeneration axonal spheroid formation IONOMYCIN store-operated calcium entry MYELIN Nile red peri-axonal swelling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部