期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
算子代数上的Lie可导映射 被引量:2
1
作者 安润玲 kichi-suke saito 《数学物理学报(A辑)》 CSCD 北大核心 2014年第1期39-48,共10页
设A为有单位且包含一非平凡幂等元的环,M为A双模.称δ:A→M为Lie可导映射(无可加或连续假设),若δ([A,B])=[δ(A),B]+[A,δ(B)],(?)A,B∈A.在一定条件下该文证明了Lie可导映射δ具有形式δ(A)=τ(A)+f(A),其中r:A→M是可加导子,f是从A到... 设A为有单位且包含一非平凡幂等元的环,M为A双模.称δ:A→M为Lie可导映射(无可加或连续假设),若δ([A,B])=[δ(A),B]+[A,δ(B)],(?)A,B∈A.在一定条件下该文证明了Lie可导映射δ具有形式δ(A)=τ(A)+f(A),其中r:A→M是可加导子,f是从A到M的中心且满足f([A,B])=0,(?)A,B∈A的映射.由此刻画了因子von Neuamnn代数和套代数上的Lie可导映射. 展开更多
关键词 Lie可导映射 因子von Neuamnn代数 套代数
下载PDF
When Does the Equality J(X*) = J(X) Hold for a Two-dimensional Banach Space X ?
2
作者 kichi-suke saito Masahiro SATO Ryotaro TANAKA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第8期1303-1314,共12页
In this paper, we consider the following problem about the James constant: When does the equality J(X*) = J(X) hold for a Banach space X ? It is known that the James constant of a Banach space does not coincide... In this paper, we consider the following problem about the James constant: When does the equality J(X*) = J(X) hold for a Banach space X ? It is known that the James constant of a Banach space does not coincide with that of its dual space in general. In fact, we already have counterexamples of two-dimensional normed spaces that are equipped with either symmetric or absolute norms. However,we show that if the norm on a two-dimensional space X is both symmetric and absolute, then the equality J(X*) = J(X) holds. This provides a global answer to the problem in the two-dimensional case. 展开更多
关键词 James constant symmetric absolute norms piecewise linear functions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部