One purpose of this paper is to give a brief overview on the research status of deformation,fracture and toughening mechanisms of polymers,including experimental,theoretical and numerical studies.Emphasis is on the mo...One purpose of this paper is to give a brief overview on the research status of deformation,fracture and toughening mechanisms of polymers,including experimental,theoretical and numerical studies.Emphasis is on the more recent progresses of micromechanics of rubber particle cavitation and crazing,and the de- velopment of fracture criteria for ductile polymers. The other purpose is to study the effect of triaxial stress constraint on the deforma- tion and fracture behavior of polymers.Polycarbonate(PC),acrylonitrile-butadiene- styrene(ABS)and PC/ABS alloy are considered in this investigation.A series of circumferentially blunt-notched bars are used to experimentally generate different tri- axial stress fields.The fracture surfaces of specimens with different notch radius are examined by scanning electron microscope(SEM)to study the fracture and tough- ening mechanisms of polymer alloy.It is shown that the triaxial stress constraint has a significant effect on the deformation,fracture and toughening of PC,ABS and PC/ABS alloy.We will also discuss the extent to which a micromechanies criterion proposed by the first author can serve as a fracture criterion for ductile polymers. A new ductile fracture parameter is emphasized,which can be employed to evaluate the fracture ductility of polymers.Stress state independence of the parameter for the PC,ABS and PC/ABS alloy has been experimentally verified.展开更多
基金The project supported by the National Natural Science Foundation of China (10125212)the Trans-Century Training Program Foundation and the Key Research Fund of the Education Ministry of China (01159)
文摘One purpose of this paper is to give a brief overview on the research status of deformation,fracture and toughening mechanisms of polymers,including experimental,theoretical and numerical studies.Emphasis is on the more recent progresses of micromechanics of rubber particle cavitation and crazing,and the de- velopment of fracture criteria for ductile polymers. The other purpose is to study the effect of triaxial stress constraint on the deforma- tion and fracture behavior of polymers.Polycarbonate(PC),acrylonitrile-butadiene- styrene(ABS)and PC/ABS alloy are considered in this investigation.A series of circumferentially blunt-notched bars are used to experimentally generate different tri- axial stress fields.The fracture surfaces of specimens with different notch radius are examined by scanning electron microscope(SEM)to study the fracture and tough- ening mechanisms of polymer alloy.It is shown that the triaxial stress constraint has a significant effect on the deformation,fracture and toughening of PC,ABS and PC/ABS alloy.We will also discuss the extent to which a micromechanies criterion proposed by the first author can serve as a fracture criterion for ductile polymers. A new ductile fracture parameter is emphasized,which can be employed to evaluate the fracture ductility of polymers.Stress state independence of the parameter for the PC,ABS and PC/ABS alloy has been experimentally verified.