Dry yeast cells (DYC) were used as a cheap nitrogen source to replace expensive yeast extract (YE) for L-lactic acid production by thermophilic Bacillus coagulans. Cassava starch (200 g. L1) was converted to L-l...Dry yeast cells (DYC) were used as a cheap nitrogen source to replace expensive yeast extract (YE) for L-lactic acid production by thermophilic Bacillus coagulans. Cassava starch (200 g. L1) was converted to L-lactic acid by simultaneous saccharification and fermentation using Bacillus coagulans WCP10-4 at 50℃ in the presence of 20g·L-1 of DYC, giving 148.1 g·L-1 of L- lactic acid at 27 h with a productivity of 5.5 g·L-1·h-1 and a yield of 92%. In contrast, 154.4 g·L-1 of lactic acid was produced at 24 h with a productivity of 6.4 g·L-1. hl and a yield of 96% when equal amount of YE was used under the same conditions. Use of pre-autolyzed DYC at 50℃ for overnight slightly improved the lactic acid titer (154.5g·L-1) and productivity (7.7g·L-1·h-1) but gave the same yield (96%).展开更多
文摘Dry yeast cells (DYC) were used as a cheap nitrogen source to replace expensive yeast extract (YE) for L-lactic acid production by thermophilic Bacillus coagulans. Cassava starch (200 g. L1) was converted to L-lactic acid by simultaneous saccharification and fermentation using Bacillus coagulans WCP10-4 at 50℃ in the presence of 20g·L-1 of DYC, giving 148.1 g·L-1 of L- lactic acid at 27 h with a productivity of 5.5 g·L-1·h-1 and a yield of 92%. In contrast, 154.4 g·L-1 of lactic acid was produced at 24 h with a productivity of 6.4 g·L-1. hl and a yield of 96% when equal amount of YE was used under the same conditions. Use of pre-autolyzed DYC at 50℃ for overnight slightly improved the lactic acid titer (154.5g·L-1) and productivity (7.7g·L-1·h-1) but gave the same yield (96%).