This study focuses on the link between precipitation, the bacteriological characteristics, and the physical parameters of drinking water sources from 2016 to 2018 in the Sagarmatha National Park (Mt. Everest region), ...This study focuses on the link between precipitation, the bacteriological characteristics, and the physical parameters of drinking water sources from 2016 to 2018 in the Sagarmatha National Park (Mt. Everest region), Nepal. Surface water shows a positive correlation between bacteria content, altitude and corresponding temperature, whereas water from springs shows no correlation between bacteria content and altitude and corresponding temperature. Correlation between precipitation data and both pH and conductivity suggests a link between drinking water quality and precipitation whereby high precipitation rates result in increased contamination of both surface water and springs used for drinking water. This data also indicates that during periods of low precipitation, water handling is likely to contribute to water contamination. These results highlight vulnerability to climate change as melting glacial ice and changing precipitation patterns are key factors for safe drinking water.展开更多
文摘This study focuses on the link between precipitation, the bacteriological characteristics, and the physical parameters of drinking water sources from 2016 to 2018 in the Sagarmatha National Park (Mt. Everest region), Nepal. Surface water shows a positive correlation between bacteria content, altitude and corresponding temperature, whereas water from springs shows no correlation between bacteria content and altitude and corresponding temperature. Correlation between precipitation data and both pH and conductivity suggests a link between drinking water quality and precipitation whereby high precipitation rates result in increased contamination of both surface water and springs used for drinking water. This data also indicates that during periods of low precipitation, water handling is likely to contribute to water contamination. These results highlight vulnerability to climate change as melting glacial ice and changing precipitation patterns are key factors for safe drinking water.