Development pressure has led to serious deforestation on the Indochina Peninsula. Particularly rapid defor-estation has occurred in easily accessible lowland areas, and it is thus important to accumulate knowledge abo...Development pressure has led to serious deforestation on the Indochina Peninsula. Particularly rapid defor-estation has occurred in easily accessible lowland areas, and it is thus important to accumulate knowledge about these forests immediately. We measured evapotranspiration rates for a lowland dry evergreen forest in Kampong Thom Province, central Cambodia, using the energy balance Bowen ratio (EBBR) method based on meteorological data collected from a 60-m-high observation tower. Daily evapotranspiration was higher during the dry season than during the rainy season of the Asian monsoon climate. The seasonal variation in evapotranspiration generally corresponded to the seasonal difference in the vapor pressure deficit. A multi-layer model was used to simulate the seasonal variation in evapotranspiration. The multilayer model also reproduced the larger evapotranspiration rate in the dry season than in the rainy season. However, observed values substantially exceeded model-calculated results during certain periods at the beginning of the dry season and in the late dry season. Moreover, during the rainy season, the model tended to overestimate evapotranspiration. The differences between these observed and simulated values may have been caused by seasonal characteristics of photosynthesis and transpiration in the lowland dry evergreen forest that were not considered in the model simulation.展开更多
The effects of forest age and dominant tree species on the water discharge volume have been analyzed by a paired-watershed experiment in two adjacent catchments in Tatsunokuchi-yama Experimental Forest, western Japan....The effects of forest age and dominant tree species on the water discharge volume have been analyzed by a paired-watershed experiment in two adjacent catchments in Tatsunokuchi-yama Experimental Forest, western Japan. The control period is 1937-1943. The treated periods are 1948-1953, 1968-1977, and 1996-2003. In these treated periods, the forest age or the dominant tree species were different between two adjacent periods. Differences in the discharge duration curves from the two catchments are compared for the control and the treated periods. A significant change in the discharge duration curves is seen in the third treated period (1996-2003) on days with low water, when the forest age difference between the adjacent catchments was 35 years. This is believed to be the result of differences in forest age and forest treatment just after the occurrence of pine wilt disease.展开更多
文摘Development pressure has led to serious deforestation on the Indochina Peninsula. Particularly rapid defor-estation has occurred in easily accessible lowland areas, and it is thus important to accumulate knowledge about these forests immediately. We measured evapotranspiration rates for a lowland dry evergreen forest in Kampong Thom Province, central Cambodia, using the energy balance Bowen ratio (EBBR) method based on meteorological data collected from a 60-m-high observation tower. Daily evapotranspiration was higher during the dry season than during the rainy season of the Asian monsoon climate. The seasonal variation in evapotranspiration generally corresponded to the seasonal difference in the vapor pressure deficit. A multi-layer model was used to simulate the seasonal variation in evapotranspiration. The multilayer model also reproduced the larger evapotranspiration rate in the dry season than in the rainy season. However, observed values substantially exceeded model-calculated results during certain periods at the beginning of the dry season and in the late dry season. Moreover, during the rainy season, the model tended to overestimate evapotranspiration. The differences between these observed and simulated values may have been caused by seasonal characteristics of photosynthesis and transpiration in the lowland dry evergreen forest that were not considered in the model simulation.
文摘The effects of forest age and dominant tree species on the water discharge volume have been analyzed by a paired-watershed experiment in two adjacent catchments in Tatsunokuchi-yama Experimental Forest, western Japan. The control period is 1937-1943. The treated periods are 1948-1953, 1968-1977, and 1996-2003. In these treated periods, the forest age or the dominant tree species were different between two adjacent periods. Differences in the discharge duration curves from the two catchments are compared for the control and the treated periods. A significant change in the discharge duration curves is seen in the third treated period (1996-2003) on days with low water, when the forest age difference between the adjacent catchments was 35 years. This is believed to be the result of differences in forest age and forest treatment just after the occurrence of pine wilt disease.