Aim: To determine the therapeutic effect of thy- mosin β4 (Tβ4) for treatment of ischemic limb disease in a mouse model. Methods: A mouse model of hindlimb ischemia was created by permanent ligation of femoral arter...Aim: To determine the therapeutic effect of thy- mosin β4 (Tβ4) for treatment of ischemic limb disease in a mouse model. Methods: A mouse model of hindlimb ischemia was created by permanent ligation of femoral arteries and internal iliac artery. Tβ4 was dissolved in sterile saline and intramuscularly injected into the centre and periphery of ligation area in the treatment group (n = 10) starting from the surgery day until 4 weeks after surgery, while control animals received saline injection only (n = 9). All animals were sacrificed at 6 weeks after surgery and used for immunohistochemistry studies. Results: Tβ4 stimulated angiogenesis was evidenced by increased vascular density based on CD31 immunostaining, which was sig- nifycantly increased in Tβ4 group (562.5 ± 78.4/mm2) as compared with control group (371.1 ± 125.7/mm2;p 0.05) groups. Tβ4 increased Pax3/7+ skeletal muscle progenitor cell density. Pax3/7+ cell density of Tβ4 group (13.7% ± 2%) was significantly higher than that of the control group (4.3% ± 1.6%, p < 0.05). However, the numbers of central nuclei fiber and central nuclei per fiber were insignificantly increased in Tβ4 group as compared to control group. The numbers of central nuclei fiber were 8.9 ± 2.1 and 9.5 ± 1.6, and the central nuclei per fiber were 0.25 ± 0.07 and 0.48 ± 0.09 for control and Tβ4 groups, respectively. Conclusions: This preliminary study suggests that localized delivery of Tβ4 increased angiogenesis and skeletal muscle progenitor cell density in ischemic skeletal muscle, but failed to promote skeletal muscle regeneration.展开更多
文摘Aim: To determine the therapeutic effect of thy- mosin β4 (Tβ4) for treatment of ischemic limb disease in a mouse model. Methods: A mouse model of hindlimb ischemia was created by permanent ligation of femoral arteries and internal iliac artery. Tβ4 was dissolved in sterile saline and intramuscularly injected into the centre and periphery of ligation area in the treatment group (n = 10) starting from the surgery day until 4 weeks after surgery, while control animals received saline injection only (n = 9). All animals were sacrificed at 6 weeks after surgery and used for immunohistochemistry studies. Results: Tβ4 stimulated angiogenesis was evidenced by increased vascular density based on CD31 immunostaining, which was sig- nifycantly increased in Tβ4 group (562.5 ± 78.4/mm2) as compared with control group (371.1 ± 125.7/mm2;p 0.05) groups. Tβ4 increased Pax3/7+ skeletal muscle progenitor cell density. Pax3/7+ cell density of Tβ4 group (13.7% ± 2%) was significantly higher than that of the control group (4.3% ± 1.6%, p < 0.05). However, the numbers of central nuclei fiber and central nuclei per fiber were insignificantly increased in Tβ4 group as compared to control group. The numbers of central nuclei fiber were 8.9 ± 2.1 and 9.5 ± 1.6, and the central nuclei per fiber were 0.25 ± 0.07 and 0.48 ± 0.09 for control and Tβ4 groups, respectively. Conclusions: This preliminary study suggests that localized delivery of Tβ4 increased angiogenesis and skeletal muscle progenitor cell density in ischemic skeletal muscle, but failed to promote skeletal muscle regeneration.