Geopolymers are an alternative to Portland cement, well known for their contribution to greenhouse gas emissions. Finding materials that can validly replace Portland cement is a challenge. It is in this logic that thi...Geopolymers are an alternative to Portland cement, well known for their contribution to greenhouse gas emissions. Finding materials that can validly replace Portland cement is a challenge. It is in this logic that this work was undertaken with the objective of characterizing two local clay resources of Togo as raw materials for geopolymers. The physico-chemical properties of these clays were determined by characterization using X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermogravimetric (TGA) and elemental analysis (ICP-OES). The results show that these clays contain kaolinite and therefore can be used in the formulation of geopolymers. The characterized clays underwent heat treatments transforming the crystalline phases into more reactive amorphous phases and then were activated by an alkaline solution in order to formulate the geopolymer materials. These elaborated materials were analyzed by Fourier transform infrared to identify the types of bonds formed. The results of these analyses show that these two local clays are well suited to be used in synthesizing geopolymers. Our future work will focus on the constraints of consolidation as well as the mechanical properties of these geopolymer materials.展开更多
文摘Geopolymers are an alternative to Portland cement, well known for their contribution to greenhouse gas emissions. Finding materials that can validly replace Portland cement is a challenge. It is in this logic that this work was undertaken with the objective of characterizing two local clay resources of Togo as raw materials for geopolymers. The physico-chemical properties of these clays were determined by characterization using X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermogravimetric (TGA) and elemental analysis (ICP-OES). The results show that these clays contain kaolinite and therefore can be used in the formulation of geopolymers. The characterized clays underwent heat treatments transforming the crystalline phases into more reactive amorphous phases and then were activated by an alkaline solution in order to formulate the geopolymer materials. These elaborated materials were analyzed by Fourier transform infrared to identify the types of bonds formed. The results of these analyses show that these two local clays are well suited to be used in synthesizing geopolymers. Our future work will focus on the constraints of consolidation as well as the mechanical properties of these geopolymer materials.