期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于MEMS声振传感器的电子听诊器 被引量:2
1
作者 孔春秀 李欣宁 +7 位作者 赵俊庆 梁尤海 何政达 赵成龙 蔡春华 万蔡辛 魏琦 端木正 《传感技术学报》 CAS CSCD 北大核心 2021年第8期1139-1142,共4页
基于微机电系统(MEMS)技术的声振传感器,设计了一种采集心脏低频振动信号的电子听诊器。所设计的MEMS硅麦克风,在传感器振膜结构上添加质量块,能够使传感器敏感于低频振动信号与声音信号;采用STM32主控模块设计滤波调理电路,通过听诊器... 基于微机电系统(MEMS)技术的声振传感器,设计了一种采集心脏低频振动信号的电子听诊器。所设计的MEMS硅麦克风,在传感器振膜结构上添加质量块,能够使传感器敏感于低频振动信号与声音信号;采用STM32主控模块设计滤波调理电路,通过听诊器振动膜结构采集信号;通过傅里叶变换分析心脏低频振动信号的相应特征。实验结果表明:该电子听诊器的信噪比为8.6 dB,满足标准电子听诊器的准确性要求(6.9 dB);通过采集信号的正常心音模态频谱与标准检测结果对比,具有较好的一致性;本文研究的电子听诊器能够采集到低频心脏振动信号特征及频谱图,可作为新型心脏病无创诊断的研究基础。 展开更多
关键词 电子听诊器 声振传感器 低频振动 心振信号 微机电系统 麦克风 信噪比
下载PDF
Lidar-Based Action-Recognition Algorithm for Medical Quality Control
2
作者 Wang Yuanze Zhang Haiyang +3 位作者 Wu Xuan kong chunxiu Ju Yezhao Zhao Changming 《激光与光电子学进展》 CSCD 北大核心 2024年第12期306-314,共9页
Medical-action recognition is crucial for ensuring the quality of medical services.With advancements in deep learning,RGB camera-based human-action recognition made huge advancements.However,RGB cameras encounter issu... Medical-action recognition is crucial for ensuring the quality of medical services.With advancements in deep learning,RGB camera-based human-action recognition made huge advancements.However,RGB cameras encounter issues,such as depth ambiguity and privacy violation.In this paper,we propose a novel lidar-based action-recognition algorithm for medical quality control.Further,point-cloud data were used for recognizing hand-washing actions of doctors and recording the action’s duration.An improved anchor-to-joint(A2J)network,with pyramid vision transformer and feature pyramid network modules,was developed for estimating the human poses.In addition,we designed a graph convolution network for action classification based on the skeleton data.Then,we evaluated the performance of the improved A2J network on the open-source ITOP and our medical pose estimation datasets.Further,we tested our medical action-recognition method in actual wards to demonstrate its effectiveness and running efficiency.The results show that the proposed algorithm can effectively recognize the actions of medical staff,providing satisfactory real-time performance and 96.3% action-classification accuracy. 展开更多
关键词 ambient intelligence LIDAR human action recognition deep learning medical care
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部