Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity ...Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity vectors in this kind of non-orthogonal coordinates will definitely result in a difficulty in solving implicitly the transformed momentum equations, and also complicate the wet-dry point judgement used for flood areas. To solve this problem, equations in terms of generalized contravariant velocity vectors in curvilinear coordinates are derived in the present study, by virtue of which, an Alternative-Direction-Implicit numerical scheme in non-orthogonal grids would then be easily obtained, and wet-dry point judgement would as well be largely simplified. A comparison is made between the explicit scheme and implicit scheme, showing that the present model is accurate and numerically stable for computations of fluid dynamics for estuarine areas and tidal flats.展开更多
基金National Natural Science Foundation of China and National Excellent Youth Foundation of China.(Grant No.49606069)
文摘Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity vectors in this kind of non-orthogonal coordinates will definitely result in a difficulty in solving implicitly the transformed momentum equations, and also complicate the wet-dry point judgement used for flood areas. To solve this problem, equations in terms of generalized contravariant velocity vectors in curvilinear coordinates are derived in the present study, by virtue of which, an Alternative-Direction-Implicit numerical scheme in non-orthogonal grids would then be easily obtained, and wet-dry point judgement would as well be largely simplified. A comparison is made between the explicit scheme and implicit scheme, showing that the present model is accurate and numerically stable for computations of fluid dynamics for estuarine areas and tidal flats.