Optical microscopy with optimal axial resolution is critical for precise visualization of two-dimensional flat-top structures.Here,we present sub-diffraction-limited ultrafast imaging of hexagonal boron nitride(hBN)na...Optical microscopy with optimal axial resolution is critical for precise visualization of two-dimensional flat-top structures.Here,we present sub-diffraction-limited ultrafast imaging of hexagonal boron nitride(hBN)nanosheets using a confocal focus-engineered coherent anti-Stokes Raman scattering(cFE-CARS)microscopic system.By incorporating a pinhole with a diameter of approximately 30μm,we effectively minimized the intensity of side lobes induced by circular partial pi-phase shift in the wavefront(diameter,d0)of the probe beam,as well as nonresonant background CARS intensities.Using axial-resolution-improved cFE-CARS(acFE-CARS),the achieved axial resolution is 350 nm,exhibiting a 4.3-folded increase in the signal-to-noise ratio compared to the previous case with 0.58 d0 phase mask.This improvement can be accomplished by using a phase mask of 0.24 d0.Additionally,we employed nonde-generate phase matching with three temporally separable incident beams,which facilitated cross-sectional visualization of highly-sample-specific and vibration-sensitive signals in a pump-probe fashion with subpicosecond time resolution.Our observations reveal time-dependent CARS dephasing in hBN nanosheets,induced by Raman-free induction decay(0.66 ps)in the 1373 cm^(−1) mode.展开更多
基金National Research Foundation of Korea(2023R1A2C100531711)H.K.also acknowledges support from the DGIST R&D programs(22-CoENT-01 and 22-BT-06)funded by the Ministry of Science and ICT.V.R.acknowledges support from Department of Science and Technology(DST)Indo-Korea joint research project(INT/Korea/P-44).
文摘Optical microscopy with optimal axial resolution is critical for precise visualization of two-dimensional flat-top structures.Here,we present sub-diffraction-limited ultrafast imaging of hexagonal boron nitride(hBN)nanosheets using a confocal focus-engineered coherent anti-Stokes Raman scattering(cFE-CARS)microscopic system.By incorporating a pinhole with a diameter of approximately 30μm,we effectively minimized the intensity of side lobes induced by circular partial pi-phase shift in the wavefront(diameter,d0)of the probe beam,as well as nonresonant background CARS intensities.Using axial-resolution-improved cFE-CARS(acFE-CARS),the achieved axial resolution is 350 nm,exhibiting a 4.3-folded increase in the signal-to-noise ratio compared to the previous case with 0.58 d0 phase mask.This improvement can be accomplished by using a phase mask of 0.24 d0.Additionally,we employed nonde-generate phase matching with three temporally separable incident beams,which facilitated cross-sectional visualization of highly-sample-specific and vibration-sensitive signals in a pump-probe fashion with subpicosecond time resolution.Our observations reveal time-dependent CARS dephasing in hBN nanosheets,induced by Raman-free induction decay(0.66 ps)in the 1373 cm^(−1) mode.