The inverse problem of magnetoencephalography (MEG) seeks the neuronal current within the conductive brain that generates a measured magnetic flux in the exterior of the brain-head system. This problem does not have a...The inverse problem of magnetoencephalography (MEG) seeks the neuronal current within the conductive brain that generates a measured magnetic flux in the exterior of the brain-head system. This problem does not have a unique solution, and in particular, it is not even possible to identify the support of the current if it extends over a three-dimensional set. However, a localized current supported on a zero-, one- or two-dimensional set can in principle be identified. In the present work, we demonstrate an analytic algorithm that is able to recover a one-dimensional distribution of current from the knowledge of the exterior magnetic flux field. In particular, we consider a neuronal current that is supported on a small line segment of arbitrary location and orientation in space, and we reduce the identification of its characteristics to a nonlinear algebraic system. A series of numerical tests show that this system has a unique real solution. A special case is easily solved via the use of trivial algebraic operations.展开更多
The support of a localized three-dimensional neuronal current distribution, within a conducting medium, is not identifiable from knowledge of the exterior magnetic flux density, obtained via Magnetoencephalographic (M...The support of a localized three-dimensional neuronal current distribution, within a conducting medium, is not identifiable from knowledge of the exterior magnetic flux density, obtained via Magnetoencephalographic (MEG) measurements. However, this is not true if the neuronal current is supported on a set with dimensionality less than three. That is, the support of a dipolar current distribution can be recovered if it is a set of isolated points, a segment of a curve, or a surface patch. In this work we provide an analytic algorithm for this inverse MEG problem and apply it to the case where the current is supported on a localized disk having arbitrary position and size within the brain tissue. The proposed recovery algorithm reduces the identification of the characteristics of the current to the solution of a nonlinear algebraic system, which can be handled numerically.展开更多
文摘The inverse problem of magnetoencephalography (MEG) seeks the neuronal current within the conductive brain that generates a measured magnetic flux in the exterior of the brain-head system. This problem does not have a unique solution, and in particular, it is not even possible to identify the support of the current if it extends over a three-dimensional set. However, a localized current supported on a zero-, one- or two-dimensional set can in principle be identified. In the present work, we demonstrate an analytic algorithm that is able to recover a one-dimensional distribution of current from the knowledge of the exterior magnetic flux field. In particular, we consider a neuronal current that is supported on a small line segment of arbitrary location and orientation in space, and we reduce the identification of its characteristics to a nonlinear algebraic system. A series of numerical tests show that this system has a unique real solution. A special case is easily solved via the use of trivial algebraic operations.
文摘The support of a localized three-dimensional neuronal current distribution, within a conducting medium, is not identifiable from knowledge of the exterior magnetic flux density, obtained via Magnetoencephalographic (MEG) measurements. However, this is not true if the neuronal current is supported on a set with dimensionality less than three. That is, the support of a dipolar current distribution can be recovered if it is a set of isolated points, a segment of a curve, or a surface patch. In this work we provide an analytic algorithm for this inverse MEG problem and apply it to the case where the current is supported on a localized disk having arbitrary position and size within the brain tissue. The proposed recovery algorithm reduces the identification of the characteristics of the current to the solution of a nonlinear algebraic system, which can be handled numerically.