Quasi-type II heterostructured nanocrystals(NCs)have been of particular interest due to their great potential for controlling the interplay of charge carriers.However,the lack of material choices for quasi-type II NCs...Quasi-type II heterostructured nanocrystals(NCs)have been of particular interest due to their great potential for controlling the interplay of charge carriers.However,the lack of material choices for quasi-type II NCs restricts the accessible emission wavelength from red to near-infrared(NIR),which hinders their use in light-emitting applications that demand a wide range of visible colors.Herein,we demonstrate a new class of quasi-type II nanoemitters formulated in ZnSe/ZnSe_(1-X)Te_(X)/ZnSe seed/spherical quantum well/shell heterostructures(SQWs)whose emission wavelength ranges from blue to orange.In a given geometry,ZnSe_(1-X)Te_(X) emissive layers grown between the ZnSe seed and the shell layer are strained to fit into the surrounding media,and thus,the lattice mismatch between ZnSe_(1-X)Te_(X) and ZnSe is effectively alleviated.In addition,composition of the ZnSe_(1-X)Te_(X) emissive layer and the dimension of the ZnSe shell layer are engineered to tailor the distribution and energy of electron and hole wave functions.Benefitting from the capabilities to tune the charge carriers on demand and to form defectfree heterojunctions,ZnSe/ZnSe_(1-X)Te_(X)/ZnSe/ZnS NCs show near-unity photoluminescence quantum yield(PLQY>90%)in a broad range of emission wavelengths(peak PL from 450nm to 600 nm).Finally,we exemplify dichromatic white NC-based light-emitting diodes(NC-LEDs)employing the mixed layer of blue-and yellow-emitting ZnSe/ZnSe_(1-X)TeX/ZnSe/ZnS SQW NCs.展开更多
基金the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science,ICT and Future Planning(No.2020M3H4A1A01086888,No.2020M3D1A2101319,No.2020R1A2C2011478,and No.2019M3D1A1078299)the Ministry of Trade,Industry&Energy(MOTIE,Korea)(No.20010737)the Electronics and Telecommunications Research Institute(ETRI)grant funded by the Korean Government(No.20ZB1200,Development of ICT Materials,Components and Equipment Technologies).G.N.and L.A.P.are thankful for the financial support from the Sao Paulo Research Foundation(FAPESP)under the grant No.2018/15574-6.
文摘Quasi-type II heterostructured nanocrystals(NCs)have been of particular interest due to their great potential for controlling the interplay of charge carriers.However,the lack of material choices for quasi-type II NCs restricts the accessible emission wavelength from red to near-infrared(NIR),which hinders their use in light-emitting applications that demand a wide range of visible colors.Herein,we demonstrate a new class of quasi-type II nanoemitters formulated in ZnSe/ZnSe_(1-X)Te_(X)/ZnSe seed/spherical quantum well/shell heterostructures(SQWs)whose emission wavelength ranges from blue to orange.In a given geometry,ZnSe_(1-X)Te_(X) emissive layers grown between the ZnSe seed and the shell layer are strained to fit into the surrounding media,and thus,the lattice mismatch between ZnSe_(1-X)Te_(X) and ZnSe is effectively alleviated.In addition,composition of the ZnSe_(1-X)Te_(X) emissive layer and the dimension of the ZnSe shell layer are engineered to tailor the distribution and energy of electron and hole wave functions.Benefitting from the capabilities to tune the charge carriers on demand and to form defectfree heterojunctions,ZnSe/ZnSe_(1-X)Te_(X)/ZnSe/ZnS NCs show near-unity photoluminescence quantum yield(PLQY>90%)in a broad range of emission wavelengths(peak PL from 450nm to 600 nm).Finally,we exemplify dichromatic white NC-based light-emitting diodes(NC-LEDs)employing the mixed layer of blue-and yellow-emitting ZnSe/ZnSe_(1-X)TeX/ZnSe/ZnS SQW NCs.