Light soaking characterization on complete SnO2:F/TiO2/In(OH)xSy/Pb(OH)xSy/PEDOT:PSS/Au, eta solar cell structure as well as on devices which do not include one or both TiO2 and/or PEDOT:PSS layers has been conducted....Light soaking characterization on complete SnO2:F/TiO2/In(OH)xSy/Pb(OH)xSy/PEDOT:PSS/Au, eta solar cell structure as well as on devices which do not include one or both TiO2 and/or PEDOT:PSS layers has been conducted. Additionally, studies of SnO2:F/In(OH)xSy/Pb(OH)xSy/PEDOT:PSS/Au solar cell have been performed. The power conversion efficiency and the short circuit current density have been found to increase with light soaking duration by a factor of about 1.6 - 2.7 and 2.1 - 3, respectively. The increase in these two parameters has been attributed to the filling up of trap states and/or charge-discharge of deep levels found in In(OH)xSy. These effects take place at almost fill factor and open circuit voltage being unaffected by the light soaking effects.展开更多
文摘Light soaking characterization on complete SnO2:F/TiO2/In(OH)xSy/Pb(OH)xSy/PEDOT:PSS/Au, eta solar cell structure as well as on devices which do not include one or both TiO2 and/or PEDOT:PSS layers has been conducted. Additionally, studies of SnO2:F/In(OH)xSy/Pb(OH)xSy/PEDOT:PSS/Au solar cell have been performed. The power conversion efficiency and the short circuit current density have been found to increase with light soaking duration by a factor of about 1.6 - 2.7 and 2.1 - 3, respectively. The increase in these two parameters has been attributed to the filling up of trap states and/or charge-discharge of deep levels found in In(OH)xSy. These effects take place at almost fill factor and open circuit voltage being unaffected by the light soaking effects.