期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Crop Root on Soil Water Retentivity and Movement 被引量:2
1
作者 kozue yuge Keiki Shigematsu +1 位作者 Mitsumasa Anan Shinogi Yoshiyuki 《American Journal of Plant Sciences》 2012年第12期1782-1787,共6页
The objective of this study was to clarify the effect of crop root on soil water retentivity and movement to improve the crop growth environment and irrigation efficiency. To simulate soil water movement considering t... The objective of this study was to clarify the effect of crop root on soil water retentivity and movement to improve the crop growth environment and irrigation efficiency. To simulate soil water movement considering the crop root effect on the physical properties of soil, a numerical model describing the soil water and heat transfers was introduced. Cultivation experiments were conducted to clarify the effect of the crop root on soil water retentivity and verify the accuracy of the numerical model. The relationship between soil water retentivity and the root content of soil samples was clarified by soil water retention curves. The soil water content displayed a high value with increasing crop root content in the high volumetric water content zone. The experimental results indicated that the saturated water content increased with the crop root content because of the porosity formed by the crop root. The differences of the soil water retentivity became smaller when the value of the matric potential was over pF 1.5. To verify the accuracy of the numerical model, an observation using acrylic slit pot was also conduced. The temporal and spatial changes of the volumetric water content and soil temperature were measured. Soil water and heat transfers, which considered the effect of the crop root on the soil water retentivity clarified by the soil water retention curves, were simulated. Simulated volumetric water content and temperature of soil agreed with observed data. This indicated that the numerical model used to simulate the soil water and heat transfer considering the crop root effect on soil water retentivity was satisfactory. Using this model, spatial and temporal changes of soil water content were simulated. The soil water condition of the root zone was relatively high compared with the initial conditions. This indicated that the volumetric water condition of the root zone increased with the soil water extraction and high soil water conditions was maintained because the soil water retentivity of root zone increased with the root effect. 展开更多
关键词 WATER Consumption Soil WATER Heat Transfer Numerical Model IRRIGATION WATER SAVING
下载PDF
Evaluation of Soil Water Management Difference in Mango Orchards between Thailand and Japan
2
作者 kozue yuge Eriko Yasunaga +3 位作者 Shinji Fukuda Wolfram Spreer Vicha Sardsud Wanwarang Pattanopo 《American Journal of Plant Sciences》 2013年第1期182-187,共6页
The objective of this study is to evaluate the difference of the soil water management in mango orchards between the varieties of “Irwin” in Japanand “Nam Dok Mai” inThailand. Field observations were conducted in ... The objective of this study is to evaluate the difference of the soil water management in mango orchards between the varieties of “Irwin” in Japanand “Nam Dok Mai” inThailand. Field observations were conducted in mango orchards in Okinawa, Japan and Phrao, Thailand to clarify the water management practices. Measurement of the hourly soil water content in Phrao indicated that the irrigation was scarce and the volumetric water content in the soil was maintained almost constant. in the flowering season. This can be the farmers’ practice for flower induction. After the flowering season, irrigation was frequent in order to produce the large fruit. In the harvest season, the soil water content was relatively high because of frequent irrigation and rainfall. In Okinawa, the volumetric water content was maintained at the same level in a relatively deep layer. The result at the5 cmdepth indicated that the farmer carefully controlled the soil water content. In the flowering season, the soil water content was relatively low. While the orchard was managed empirically, the volumetric water content near the soil surface was maintained over 25% during the harvest season. This result indicates that the farmer performed the good soil water management to enhance mango fruit quality even without technical measurement. A numerical model describing the soil water and heat transfers was introduced to predict the farmer’s empirical soil water management in Okinawa. Using the meteorological data in March 2010, the irrigation regime was predicted using the simulated soil water content. In the flowering season, the farmer irrigated when the soil surface water content reached 14%. Based on this criterion for the empirical soil water management, the simulation result indicated that the farmer irrigated four times in this period. The numerical model presented here can be useful for evaluating the differences in water management practices of local farmers. 展开更多
关键词 IRRIGATION REGIME Soil Water and Heat Transfer Numerical Model Yield and Quality of MANGO FRUIT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部