期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Micro-structural evolution and their effects on physical properties in different types of tectonically deformed coals 被引量:44
1
作者 Yiwen Ju kray luxbacher +4 位作者 Xiaoshi Li Guochang Wang Zhifeng Yan Mingming Wei Liye Yu 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期364-375,共12页
The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact p... The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact physical properties such as porosity and permeability.This study focuses on structure and properties of TDC from the Huaibei and Huainan coal mining areas of southern North China.Relationships between the macromolecular structure and the pore structure of TDC were analyzed using techniques such as X-ray diffraction,high-resolution transmission electron microcopy,and the low-temperature nitrogen adsorption.The results indicated that the directional stress condition can cause the arrangement of basic structural units(BSU)more serious and closer.And,the orientation is stronger in ductile deformed coal than in brittle deformed coal.Tectonic deformation directly influences the macromolecular structure of coal and consequently results in dynamic metamorphism.Because the size of BSU in brittle deformed coal increases more slowly than in ductile deformed coal,frictional heating and stress-chemistry of shearing areas might play a more important role,locally altering coal structure under stress,in brittle deformed coal.Strain energy is more significant in increasing the ductile deformation of coal.Furthermore,mesopores account for larger percentage of the nano-scale pore volume in brittle deformed coals,while mesopores volume in ductile deformed coal diminishes rapidly along with an increase in the proportion of micropores and sub-micropores.This research also approved that the deformations of macromolecular structures change nano-scale pore structures,which are very important for gas adsorption and pervasion space for gas.Therefore,the exploration and development potential of coal bed methane is promising for reservoirs that are subjected to a certain degree of brittle deformation(such as schistose structure coal,mortar structure coal and cataclastic structure coal).It also holds promise for TDC resulting from wrinkle structure coal of low ductile deformation and later superimposed by brittle deformation.Other kinds of TDC suffering from strong brittle-ductile and ductile deformation,such as scale structure coal and mylonitic structure coal,are difficult problems to resolve. 展开更多
关键词 Tectonically deformed coals Formation mechanisms Macromolecular structure Pore structure Micro-structured evolution Coal bed methane
下载PDF
Determination of critical parameters in the analysis of road tunnel fires 被引量:1
2
作者 Ali Haghighat kray luxbacher 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期187-198,共12页
The analysis of the fluid characteristics downstream of a fire source in transportation tunnels is one the most important factor in the emergency response, evacuation, and the rescue service studies. Some crucial para... The analysis of the fluid characteristics downstream of a fire source in transportation tunnels is one the most important factor in the emergency response, evacuation, and the rescue service studies. Some crucial parameters can affect the fluid characteristics downstream of the fire. This research develops a statistical analysis on the computational fluid dynamics(CFD) data of the road tunnel fire simulations in order to quantify the significance of tunnel dimensions, inlet air velocity, heat release rate, and the physical fire size(fire perimeter) on the fluid characteristics downstream of the fire source. The selected characteristics of the fluid(response variables) were the average temperature, the average density, the average viscosity, and the average velocity. The prediction of the designed statistical models was assessed; then the significant parameters' effects and the parameters interactive effects on different response variables were determined individually. Next, the effect of computational domain length on the selection of the significant parameters downstream of the fire source was analyzed. In this statistical analysis, the linear models were found to provide the statistically good prediction. The effect of the fire perimeter and the parameters interactive effects on the selected response variables downstream of the fire, were found to be insignificant. 展开更多
关键词 Road TUNNEL FIRE TWO-LEVEL FRACTIONAL FACTORIAL DESIGN Statistical TWO-LEVEL DESIGN CFD FIRE dynamics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部