This paper focuses on the micromechanical study of the tensile property of Polymer-Clay Nanocomposites (PCN). Polypropylene (PP) filled with nanoclay is chosen as the PCN. Measurements of optical dispersion parameters...This paper focuses on the micromechanical study of the tensile property of Polymer-Clay Nanocomposites (PCN). Polypropylene (PP) filled with nanoclay is chosen as the PCN. Measurements of optical dispersion parameters (as discussed by Basu et al., namely, exfoliation number (ξn), degree of dispersions (χ) and agglomerate %) in PCN system were carried out using Transmission Electron Microscopy (TEM) and Optical Microscopy (OM). The experimentally obtained tensile modulus is compared with theoretically obtained modulus values from the optical dispersion parameters and observed a close matching between these values. Also, the tensile values are compared with other standard theoretical models and observed that the results obtained from optical dispersion parameters are suited well with experimental results.展开更多
This work presents the effect of synthetic procedures (extrusion and casting) on the dispersion characteristics of nano layered silicate clay particles in the polypropylene (PP) polymer matrix. Three different molecul...This work presents the effect of synthetic procedures (extrusion and casting) on the dispersion characteristics of nano layered silicate clay particles in the polypropylene (PP) polymer matrix. Three different molecular weights PP samples are taken and filled with nanoclay of 1 wt% and 3 wt%, and these nanocomposites were synthesized by using an extrusion or casting methods. The X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) is used to characterize the structure and morphology of nanocomposites. Rheological and mechanical results show that the extruded products are better than that of cast products. The outcome of this work is discussed in this paper.展开更多
文摘This paper focuses on the micromechanical study of the tensile property of Polymer-Clay Nanocomposites (PCN). Polypropylene (PP) filled with nanoclay is chosen as the PCN. Measurements of optical dispersion parameters (as discussed by Basu et al., namely, exfoliation number (ξn), degree of dispersions (χ) and agglomerate %) in PCN system were carried out using Transmission Electron Microscopy (TEM) and Optical Microscopy (OM). The experimentally obtained tensile modulus is compared with theoretically obtained modulus values from the optical dispersion parameters and observed a close matching between these values. Also, the tensile values are compared with other standard theoretical models and observed that the results obtained from optical dispersion parameters are suited well with experimental results.
文摘This work presents the effect of synthetic procedures (extrusion and casting) on the dispersion characteristics of nano layered silicate clay particles in the polypropylene (PP) polymer matrix. Three different molecular weights PP samples are taken and filled with nanoclay of 1 wt% and 3 wt%, and these nanocomposites were synthesized by using an extrusion or casting methods. The X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) is used to characterize the structure and morphology of nanocomposites. Rheological and mechanical results show that the extruded products are better than that of cast products. The outcome of this work is discussed in this paper.