The electrochemical properties of 2D materials,particularly transition metal dichalcogenides(TMDs),hinge ontheir structural and chemical characteristics.To be practicallyviable,achieving large-scale,high-yield product...The electrochemical properties of 2D materials,particularly transition metal dichalcogenides(TMDs),hinge ontheir structural and chemical characteristics.To be practicallyviable,achieving large-scale,high-yield production is crucial,ensuring both quality and electrochemical suitability forapplications in energy storage,electrocatalysis,and potentialbasedionic sieving membranes.A prerequisite for success is a deepunderstanding of the synthesis process,forming a critical linkbetween materials synthesis and electrochemical performance.Thisreview extensively examines the liquid-phase exfoliation technique,providing insights into potential advancements and strategies tooptimize the TMDs nanosheet yield while preserving theirelectrochemical attributes.The primary goal is to compiletechniques for enhancing TMDs nanosheet yield through direct liquid-phase exfoliation,considering parameters like solvents,surfactants,centrifugation,and sonication dynamics.Beyond addressing the exfoliation yield,the review emphasizes the potentialimpact of these parameters on the structural and chemical properties of TMD nanosheets,highlighting their pivotal role inelectrochemical applications.Acknowledging evolving research methodologies,the review explores integrating machine learning anddata science as tools for understanding relationships and key characteristics.Envisioned to advance 2D material research,includingthe optimization of graphene,MXenes,and TMDs synthesis for electrochemical applications,this compilation charts a coursetoward data-driven techniques.By bridging experimental and machine learning approaches,it promises to reshape the landscape ofknowledge in electrochemistry,offering a transformative resource for the academic community.展开更多
基金This project is funded by National Research Council of Thailand(NRCT)under Contract N42A660942.P.C.acknowledges the ETS scholarship awarded by Sirindhorn International Institute of Technology,Thammasat University.P.C.thanks Mrs.Siriporn Chavalekvirat,Mr.Decha Jitkla,Mr.Tule Chavalekvirat,Ms.Aritsa Bunpheng,and Mr.Na Jaemin for unconditional support and love.
文摘The electrochemical properties of 2D materials,particularly transition metal dichalcogenides(TMDs),hinge ontheir structural and chemical characteristics.To be practicallyviable,achieving large-scale,high-yield production is crucial,ensuring both quality and electrochemical suitability forapplications in energy storage,electrocatalysis,and potentialbasedionic sieving membranes.A prerequisite for success is a deepunderstanding of the synthesis process,forming a critical linkbetween materials synthesis and electrochemical performance.Thisreview extensively examines the liquid-phase exfoliation technique,providing insights into potential advancements and strategies tooptimize the TMDs nanosheet yield while preserving theirelectrochemical attributes.The primary goal is to compiletechniques for enhancing TMDs nanosheet yield through direct liquid-phase exfoliation,considering parameters like solvents,surfactants,centrifugation,and sonication dynamics.Beyond addressing the exfoliation yield,the review emphasizes the potentialimpact of these parameters on the structural and chemical properties of TMD nanosheets,highlighting their pivotal role inelectrochemical applications.Acknowledging evolving research methodologies,the review explores integrating machine learning anddata science as tools for understanding relationships and key characteristics.Envisioned to advance 2D material research,includingthe optimization of graphene,MXenes,and TMDs synthesis for electrochemical applications,this compilation charts a coursetoward data-driven techniques.By bridging experimental and machine learning approaches,it promises to reshape the landscape ofknowledge in electrochemistry,offering a transformative resource for the academic community.