A complex autonomous inventory coupled system is considered. It can take, for example, the form of a network of chemical or biochemical reactors, where the inventory interactions perform the recycling of by-products b...A complex autonomous inventory coupled system is considered. It can take, for example, the form of a network of chemical or biochemical reactors, where the inventory interactions perform the recycling of by-products between the subsystems. Because of the flexible subsystems interactions, each of them can be operated with their own periods utilizing advantageously their dynamic properties. A multifrequency second-order test generalizing the p-test for single systems is described. It can be used to decide which kind of the operation (the static one, the periodic one or the multiperiodic one) will intensify the productivity of a complex system. An illustrative example of the multiperiodic optimization of a complex chemical production system is presented.展开更多
文摘A complex autonomous inventory coupled system is considered. It can take, for example, the form of a network of chemical or biochemical reactors, where the inventory interactions perform the recycling of by-products between the subsystems. Because of the flexible subsystems interactions, each of them can be operated with their own periods utilizing advantageously their dynamic properties. A multifrequency second-order test generalizing the p-test for single systems is described. It can be used to decide which kind of the operation (the static one, the periodic one or the multiperiodic one) will intensify the productivity of a complex system. An illustrative example of the multiperiodic optimization of a complex chemical production system is presented.