The turbulent fluctuation and the rotation correction of wall function law are investigated in the entrance section of a rotating channel. The one-dimensional hot wire probe and the X-type probe are utilized to measur...The turbulent fluctuation and the rotation correction of wall function law are investigated in the entrance section of a rotating channel. The one-dimensional hot wire probe and the X-type probe are utilized to measure the boundary layer at four streamwise stations. Through the analysis on the boundary layer near the leading side and trailing side, it is found that the turbulent fluctuation is promoted in the trailing side whereas suppressed in the leading side. This difference is attributed to the Coriolis instability near the trailing side. In addition, considering the local rotation parameter Rc, whose maximum absolute value is 0.014, is larger than that in previous research, whose maximum value is 0.007, the whole process of the relaminarization is captured. To understand this phenomenon better, the effects of the generation term and the Coriolis term in the transport equation of the Reynolds stress are discussed. In addition, the rotation correction of the viscous-Coriolis region and the Coriolis region are discussed, a new revising method for the wall function is proposed.展开更多
The developing secondary flow fields in the entrance section of a rotating straight channel were experimentally investigated using Particle Image Velocimetry(PIV). The effects of streamwise position, Reynolds number...The developing secondary flow fields in the entrance section of a rotating straight channel were experimentally investigated using Particle Image Velocimetry(PIV). The effects of streamwise position, Reynolds number and rotation number on the development of the secondary flow fields were revealed. The results show that the absolute values of vorticity flux of the trailing side roll cells increase with increasing radius of the measured plane and rotation number. When the absolute value of vorticity flux exceeds a critical value, the merging of the trailing side roll cells appears. Moreover, when the number of the trailing side vortex pairs is even, the absolute values of vorticity flux of the leading side vortices increase along streamwise direction. Otherwise, the absolute values decrease along the streamwise direction. By the circulation analysis, this phenomenon was found to have relationship with the merging of the trailing side roll cells, and further concluded that the secondary flow field in a rotating channel has to be treated as a whole. At last,the increase of the Reynolds number was found to be able to induce the merging position moves upstream.展开更多
基金supported by the National Natural Science Foundation of China (No. 51541605)
文摘The turbulent fluctuation and the rotation correction of wall function law are investigated in the entrance section of a rotating channel. The one-dimensional hot wire probe and the X-type probe are utilized to measure the boundary layer at four streamwise stations. Through the analysis on the boundary layer near the leading side and trailing side, it is found that the turbulent fluctuation is promoted in the trailing side whereas suppressed in the leading side. This difference is attributed to the Coriolis instability near the trailing side. In addition, considering the local rotation parameter Rc, whose maximum absolute value is 0.014, is larger than that in previous research, whose maximum value is 0.007, the whole process of the relaminarization is captured. To understand this phenomenon better, the effects of the generation term and the Coriolis term in the transport equation of the Reynolds stress are discussed. In addition, the rotation correction of the viscous-Coriolis region and the Coriolis region are discussed, a new revising method for the wall function is proposed.
基金financially supported by the Academic Excellence Foundation of BUAA for Ph.D.studentsthe National Natural Science Foundation of China (No. 51506002)
文摘The developing secondary flow fields in the entrance section of a rotating straight channel were experimentally investigated using Particle Image Velocimetry(PIV). The effects of streamwise position, Reynolds number and rotation number on the development of the secondary flow fields were revealed. The results show that the absolute values of vorticity flux of the trailing side roll cells increase with increasing radius of the measured plane and rotation number. When the absolute value of vorticity flux exceeds a critical value, the merging of the trailing side roll cells appears. Moreover, when the number of the trailing side vortex pairs is even, the absolute values of vorticity flux of the leading side vortices increase along streamwise direction. Otherwise, the absolute values decrease along the streamwise direction. By the circulation analysis, this phenomenon was found to have relationship with the merging of the trailing side roll cells, and further concluded that the secondary flow field in a rotating channel has to be treated as a whole. At last,the increase of the Reynolds number was found to be able to induce the merging position moves upstream.