Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy ...Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.展开更多
We demonstrated a continuous wave(cw) single-frequency intracavity frequency-doubled Nd:YVO_4/LBO laser with 532 nm output of 7.5 W and 1.06 μm output of 3.1 W, and low intensity noise in audio frequency region.To su...We demonstrated a continuous wave(cw) single-frequency intracavity frequency-doubled Nd:YVO_4/LBO laser with 532 nm output of 7.5 W and 1.06 μm output of 3.1 W, and low intensity noise in audio frequency region.To suppress the intensity noise of the high power 532 nm laser, a laser frequency locking system and a feedback loop based on a Mach-Zehnder interferometer were designed and used.The influences of the frequency stabilization and the crucial parameters of the MZI, such as the power splitting ratio of the beam splitters and the locking state of the MZI, on the intensity noise of the 532 nm laser were investigated in detail.After the experimental optimizations, the laser intensity noise in the frequency region from 0.4 kHz to 10 kHz was significantly suppressed.展开更多
基金the National Key Research and Development Program of China(Grant No.2017YFB0405203)the Shanxi“1331 Project”Key Subjects Construction,China(Grant No.1331KSC).
文摘Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0301401)
文摘We demonstrated a continuous wave(cw) single-frequency intracavity frequency-doubled Nd:YVO_4/LBO laser with 532 nm output of 7.5 W and 1.06 μm output of 3.1 W, and low intensity noise in audio frequency region.To suppress the intensity noise of the high power 532 nm laser, a laser frequency locking system and a feedback loop based on a Mach-Zehnder interferometer were designed and used.The influences of the frequency stabilization and the crucial parameters of the MZI, such as the power splitting ratio of the beam splitters and the locking state of the MZI, on the intensity noise of the 532 nm laser were investigated in detail.After the experimental optimizations, the laser intensity noise in the frequency region from 0.4 kHz to 10 kHz was significantly suppressed.