The violaxanthin de-epoxidase gene was cloned from rice (Oryza sativa subsp. japonica). The full length of the cDNA is 1887 bp, encoding a 446-amino acids protein with the transit peptide of 98 amino acids. The bacter...The violaxanthin de-epoxidase gene was cloned from rice (Oryza sativa subsp. japonica). The full length of the cDNA is 1887 bp, encoding a 446-amino acids protein with the transit peptide of 98 amino acids. The bacterial expression vector pET-Rvde was constructed and the expression quantity of the exogenous protein increased with the induction time by 0.4 mmol/L IPTG. Its molecular weight was similar with that of the native VDE. Western blotting indicated that the expressed protein has immu-nological reaction with the VDE polyclonal antibody. The absorbance spectrum together with xanthophyll pigments quantification by HPLC demonstrated that the expressed VDE has its enzyme activity, which can de-epoxidate violaxanthin into antheraxanthin and zeaxanthin in vitro.展开更多
基金This work was supported by the State Key Basic Research Development Plan of China (Grant No. 1998010100)the Innovation Foundation of Laboratory of Photosynthesis Basic Research, Institute of Botany, the Chinese Academy of Sciences.
文摘The violaxanthin de-epoxidase gene was cloned from rice (Oryza sativa subsp. japonica). The full length of the cDNA is 1887 bp, encoding a 446-amino acids protein with the transit peptide of 98 amino acids. The bacterial expression vector pET-Rvde was constructed and the expression quantity of the exogenous protein increased with the induction time by 0.4 mmol/L IPTG. Its molecular weight was similar with that of the native VDE. Western blotting indicated that the expressed protein has immu-nological reaction with the VDE polyclonal antibody. The absorbance spectrum together with xanthophyll pigments quantification by HPLC demonstrated that the expressed VDE has its enzyme activity, which can de-epoxidate violaxanthin into antheraxanthin and zeaxanthin in vitro.