ungsten carbides have attracted wide attentions as Pt substitute electrocatalysts for hydrogen evolution reaction (HER), due to their good stability in an acid environment and Pt-like behaviour in hydrolysis. However,...ungsten carbides have attracted wide attentions as Pt substitute electrocatalysts for hydrogen evolution reaction (HER), due to their good stability in an acid environment and Pt-like behaviour in hydrolysis. However, quantum chemistry calculations predict that the strong tungsten-hydrogen bonding hinders hydrogen desorption and restricts the overall catalytic activity. Synergistic modulation of host and guest electronic interaction can change the local work function of a compound, and therefore, improve its electrocatalytic activity over either of the elements individually. Herein, we develop a creative and facile solid-state approach to synthesize self-supported carbon-encapsulated single-phase WC hybrid nanowires arrays (nanoarrays) as HER catalyst. The theoretical calculations reveal that carbon encapsulation modifies the Gibbs free energy of H* values for the WC adsorption sites, endowing a more favorable C@WC active site for HER. The experimental results exhibit that the hybrid WC nanoarrays possess remarkable Pt-like catalytic behavior, with superior activity and stability in an acidic media, which can be compared to the best non-noble metal catalysts reported to date for hydrogen evolution reaction. The present results and the facile synthesis method open up an exciting avenue for developing cost-effective catalysts with controllable morphology and functionality for scalable hydrogen generation and other carbide nanomaterials applicable to a range of electrocatalytic reactions.展开更多
基金This work was supported by the Shenzhen Science and Technology Research Grant(ZDSYS201707281026184)the Natural Science Foundation of Shenzhen(JCYJ20190813110605381).
文摘ungsten carbides have attracted wide attentions as Pt substitute electrocatalysts for hydrogen evolution reaction (HER), due to their good stability in an acid environment and Pt-like behaviour in hydrolysis. However, quantum chemistry calculations predict that the strong tungsten-hydrogen bonding hinders hydrogen desorption and restricts the overall catalytic activity. Synergistic modulation of host and guest electronic interaction can change the local work function of a compound, and therefore, improve its electrocatalytic activity over either of the elements individually. Herein, we develop a creative and facile solid-state approach to synthesize self-supported carbon-encapsulated single-phase WC hybrid nanowires arrays (nanoarrays) as HER catalyst. The theoretical calculations reveal that carbon encapsulation modifies the Gibbs free energy of H* values for the WC adsorption sites, endowing a more favorable C@WC active site for HER. The experimental results exhibit that the hybrid WC nanoarrays possess remarkable Pt-like catalytic behavior, with superior activity and stability in an acidic media, which can be compared to the best non-noble metal catalysts reported to date for hydrogen evolution reaction. The present results and the facile synthesis method open up an exciting avenue for developing cost-effective catalysts with controllable morphology and functionality for scalable hydrogen generation and other carbide nanomaterials applicable to a range of electrocatalytic reactions.