期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bone morphogenetic protein-7 induced bone marrow stromal cells differentiate into neuron-like cells
1
作者 kuanxin li Yuling Zhang +4 位作者 Weishan Wang Bin He Jianhua Sun Jinbo Dong Chenhui Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第22期1685-1690,共6页
Bone morphogenetic protein-7 is widely accepted as an inducer for bone marrow stem cells differentiating into osteoblasts and chondrocytes. Whether bone marrow stromal cells differentiate into neuron-like cells remain... Bone morphogenetic protein-7 is widely accepted as an inducer for bone marrow stem cells differentiating into osteoblasts and chondrocytes. Whether bone marrow stromal cells differentiate into neuron-like cells remains unclear. The current study examined the presence of positive cells for intermediate filament protein and microtubule associated protein-2 in the cytoplasm of bone marrow stromal cells induced by bone morphogenetic protein-7 under an inverted microscope, while no expression of glial fibrillary acidic protein was found. Reverse transcription PCR electrophoresis also revealed a positive target band for intermediate filament protein and microtubule-associated protein 2 mRNA. These results confirmed that bone morphogenetic protein-7 induces rat bone marrow stromal cells differentiating into neuron-like cells. 展开更多
关键词 bone morphogenetic protein-7 DIFFERENTIATION bone marrow stromal cells neuron-like cells microtubule-associated protein 2 intermediate filament protein glial fibrillary acidic protein neural regeneration
下载PDF
Transplantation of BMP-7 gene-transfected bone marrow mesenchymal stem cells for the treatment of spinal cord injury in rats
2
作者 XUYI WANG WEN ZHANG +1 位作者 LEI GAO kuanxin li 《BIOCELL》 SCIE 2022年第9期2065-2072,共8页
Background:Spinal cord injury(SCI)is a serious traumatic disease of the central nervous system,and there is currently no effective treatment for SCI because of its complicated pathophysiology.Bone marrow mesenchymal s... Background:Spinal cord injury(SCI)is a serious traumatic disease of the central nervous system,and there is currently no effective treatment for SCI because of its complicated pathophysiology.Bone marrow mesenchymal stem cells(BMSCs)have multidirectional differentiation abilities.Our study aims to explore the effects of bone morphogenetic protein 7(BMP-7)-modified BMSCs transplantation on the repair of SCI in rats.Methods:In this study,a rat spinal cord injury model was established with the modified Allen method.Then,BMSCs transfected with the BMP7 gene were transplanted to treat the spinal cord injury in rats.Forty Sprague-Dawley rats were randomly divided into the sham operation group(sham group),spinal cord injury group(model group),BMSC treatment group(BMSC group)and LV-BMP7-BMSC treatment group(LV-BMP7-BMSC group).The Basso,Beattie,and Bresnahan(BBB)score was used to evaluate the recovery of hindlimb function in the rats.The levels of neurofilament protein NF-200(NF-200)and glial fibrillary acidic protein(GFAP)were detected by immunofluorescence,RT-PCR and Western blotting.Results:At 14 d,21 d,and 28 d after treatment,the BBB score of the rats in the LV-BMP7-BMSC group was higher than that of the rats in the model group and BMSC group.The results showed that NF-200 was expressed at the local spinal cord injury site.Compared with that of the sham group,the NF-200 expression level of the BMSC group and LV-BMP7-BMSC group was increased(P<0.05).The results showed that the mRNA expression levels of NF-200 in the spinal cord tissue of the BMSC group and LV-BMP7-BMSC group were increased compared with those of the sham group(P<0.05).The western blotting results further confirmed the PCR results.Conclusion:BMP-7 gene-modified BMSC transplantation can promote the repair of spinal cord functions after SCI in rats. 展开更多
关键词 Bone morphogenetic protein 7 Bone marrow mesenchymal stem cells Spinal cord injury
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部