期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Microstructure and compression properties of fine Al2O3 particles dispersion strengthened molybdenum alloy 被引量:4
1
作者 Tie-long SUN Liu-jie XU +4 位作者 Shi-zhong WEI kun-ming pan Wu-hui LI Yu-cheng ZHOU Zhi-min HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第12期3307-3321,共15页
The Mo alloys reinforced by Al2O3 particles were fabricated by hydrothermal synthesis and powder metallurgy. The microstructures of Mo-Al2O3 alloys were studied by using XRD, SEM and TEM. The results show that Al2O3 p... The Mo alloys reinforced by Al2O3 particles were fabricated by hydrothermal synthesis and powder metallurgy. The microstructures of Mo-Al2O3 alloys were studied by using XRD, SEM and TEM. The results show that Al2O3 particles, existing as a stable hexagonal phase(α-Al2O3), are uniformly dispersed in Mo matrix. The ultrafine α-Al2O3 particles remarkably refine grain size and increase dislocation density of Mo alloys. Moreover, a good interfacial bonding zone between α-Al2O3 and Mo grain is obtained. The crystallographic orientations of the interface of the Al2O3 particles and Mo matrix are [111]a-Al2O3//[111]Mo and(112)a-Al2O3//(0 11)Mo. Due to the effect of secondary phase and dislocation strengthening, the yield strength of Mo-2.0 vol.%Al2O3 alloy annealed at 1200 ℃ is approximately 56.0% higher than that of pure Mo. The results confirm that the addition of Al2O3 particles is a promising method to improve the mechanical properties of Mo alloys. 展开更多
关键词 Mo−Al2O3 alloys hydrothermal synthesis interface compression test dispersion strengthening
下载PDF
Emerging WS_(2)/WSe_(2)@graphene nanocomposites: synthesis and electrochemical energy storage applications
2
作者 Yu-Meng Gao Yong Liu +8 位作者 Kai-Jia Feng Jun-Qing Ma Ying-Jie Miao Bin-Rui Xu kun-ming pan Osaka Akiyoshi Guang-Xin Wang Ke-Ke Zhang Qiao-Bao Zhang 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期1-19,共19页
In recent years, tungsten disulfide(WS_(2)) and tungsten selenide(WSe_(2)) have emerged as favorable electrode materials because of their high theoretical capacity, large interlayer spacing, and high chemical activity... In recent years, tungsten disulfide(WS_(2)) and tungsten selenide(WSe_(2)) have emerged as favorable electrode materials because of their high theoretical capacity, large interlayer spacing, and high chemical activity;nevertheless, they have relatively low electronic conductivity and undergo large volume expansion during cycling, which greatly hinder them in practical applications. These drawbacks are addressed by combining a superior type of carbon material, graphene, with WS_(2) and WSe_(2) to form a WS_(2)/WSe_(2)@graphene nanocomposites.These materials have received considerable attention in electro-chemical energy storage applications such as lithium-ion batteries(LIBs), sodium-ion batteries(SIBs),and supercapacitors. Considering the rapidly growing research enthusiasm on this topic over the past several years, here the recent progress of WS_(2)/WSe_(2)@graphene nanocomposites in electrochemical energy storage applications is summarized. Furthermore, various methods for the synthesis of WS_(2)/WSe_(2)@graphene nanocomposites are reported and the relationships among these methods, nano/microstructures, and electrochemical performance are systematically summarized and discussed. In addition, the challenges and prospects for the future study and application of WS_(2)/WSe_(2)@graphene nanocomposites in electrochemical energy storage applications are proposed. 展开更多
关键词 WS_(2)/WSe_(2)@graphene nanocomposites Liion batteries(LIBs) Na-ion batteries(SIBs) SUPERCAPACITORS Electrochemical performance
原文传递
Improved material descriptors for bulk modulus in intermetallic compounds via machine learning
3
作者 De-Xin Zhu kun-ming pan +8 位作者 Yuan Wu Xiao-Ye Zhou Xiang-Yue Li Yong-Peng Ren Sai-Ru Shi Hua Yu Shi-Zhong Wei Hong-Hui Wu Xu-Sheng Yang 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2396-2405,共10页
Bulk modulus is an important mechanical property in the optimal design and selection of intermetallic compounds.In this study,bulk modulus datasets of intermetallic compounds were collected,and the features affecting ... Bulk modulus is an important mechanical property in the optimal design and selection of intermetallic compounds.In this study,bulk modulus datasets of intermetallic compounds were collected,and the features affecting the bulk modulus of intermetallics were screened via feature engineering.Three features B_(cal),dB_(avg),and TIE(corresponding to calculated bulk modulus,mean bulk modulus,and third ionization energy,respectively)were found to be the dominant factors influencing bulk modulus and can be extended to other multi-component alloys.Particularly,we predicted the bulk modulus with an accuracy of 95%using surrogate machine learning models with the selected features,and these features were also demonstrated to be effective for high-entropy alloys.Moreover,symbolic regression provided an expression for the relationship between bulk modulus and the screened features.The machine learning models provide a new approach for optimizing and predicting the bulk moduli of intermetallic compounds. 展开更多
关键词 Bulk modulus Intermetallic compounds Machine learning Symbolic regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部