期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Spatial variability of soil chemical properties of Moso bamboo forests of China
1
作者 Regassa Terefe kun-yong yu +3 位作者 Yangbo Deng Xiong Yao Fan Wang Jian Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2599-2608,共10页
This study investigates the spatial variability of soil organic matter(SOM),soil organic carbon(SOC)and pH in the upper 20-cm layer and 20-40 cm layer in Moso bamboo(Phyllostachys pubescens Pradelle)forests using a ge... This study investigates the spatial variability of soil organic matter(SOM),soil organic carbon(SOC)and pH in the upper 20-cm layer and 20-40 cm layer in Moso bamboo(Phyllostachys pubescens Pradelle)forests using a geostatistics model.Interpolation maps of SOM,SOC,and pH were developed using ordinary kriging(OK)and inverse distance weighted(IDW)methods.The pH,SOC,and SOM of the two soil layers ranged from 4.6 to 4.7,from 1.5 to 2.7 g kg^(-1)and from 20.3 to 22.4 g kg^(-1),respectively.The coefficient of variation for SOM and SOC was 29.9-43.3%while a weak variability was found for pH.Gaussian and exponential models performed well in describing the spatial variability of SOC contents with R^(2)varying from 0.95 to 0.90.The nugget/sill values of pH are less than 25%,which indicates a strong spatial correlation,while the nugget/sill values of SOC and SOM fall under moderate spatial correlation.Interpolation using ordinary kriging and inverse distance weighted methods revealed that the spatial distribution of SOM,SOC,and pH was inconsistent due to external and internal factors across the plots.Regarding the cross-validation results,the ordinary kriging method performed better than inverse distance weighted method for selected soil properties.This study suggests that the spatial variability of soil chemical properties revealed by geostatistics modeling will help decision-makers improve the management of soil properties. 展开更多
关键词 Cross-validation Geostatistics Inverse distance weighted Ordinary kriging Semi-variance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部