An organic compound exhibiting simultaneously reversible switch between its emission colors and luminescence mechanisms,possessing high contrast from deep blue normal fluorescence(NF) to yellow thermally activated del...An organic compound exhibiting simultaneously reversible switch between its emission colors and luminescence mechanisms,possessing high contrast from deep blue normal fluorescence(NF) to yellow thermally activated delayed fluorescence(TADF),is reported. Based on these two complementary colors, white-light emission combining NF and TADF from a single compound can be achieved in various states. Experimental results and density functional theory calculations indicate that the controllable conformational distribution under thermal and mechanical activation is the mechanism responsible for the reversible switching behavior.展开更多
基金supported by the National Key R&D Program of China (2016YFB0401004)the National Natural Science Foundation of China (51625301, 51573059, 91233116)+1 种基金the National Basic Research Program of China (2015CB655003)Guangdong Provincial Department of Science and Technology (2016B090906003, 2016TX03C175)
文摘An organic compound exhibiting simultaneously reversible switch between its emission colors and luminescence mechanisms,possessing high contrast from deep blue normal fluorescence(NF) to yellow thermally activated delayed fluorescence(TADF),is reported. Based on these two complementary colors, white-light emission combining NF and TADF from a single compound can be achieved in various states. Experimental results and density functional theory calculations indicate that the controllable conformational distribution under thermal and mechanical activation is the mechanism responsible for the reversible switching behavior.