期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Pt-confinement catalyst with dendritic hierarchical pores on excellent sulfur-resistance for hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene 被引量:1
1
作者 Xilong Wang Chengkun Xiao +8 位作者 Mohnnad H.Alabsi Peng Zheng Zhengkai Cao Jinlin Mei Yu Shi Aijun Duan Daowei Gao kuo-wei huang Chunming Xu 《Green Energy & Environment》 SCIE EI CSCD 2022年第2期324-333,共10页
Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance ... Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS. 展开更多
关键词 CATALYST SULFUR pores
下载PDF
Nitrogen Reduction to Ammonia by a Phosphorus-Nitrogen PN^(3) P-Mo(V)Nitride Complex:Significant Enhancement via Ligand Postmodification
2
作者 Delong Han Priyanka Chakraborty +9 位作者 Mei-Hui huang Li Yang Hao huang Théo P.Gonçalves Abdul Hamid Emwas Zhiping Lai Jr-Hau He Aleksander Shkurenko Mohamed Eddaoudi kuo-wei huang 《CCS Chemistry》 CAS CSCD 2023年第3期616-623,共8页
Efforts to develop organometallic complexes for catalytic nitrogen reduction have seen significant progress in recent years.However,the strategies for improving the activity of the homogenous catalysts have mainly foc... Efforts to develop organometallic complexes for catalytic nitrogen reduction have seen significant progress in recent years.However,the strategies for improving the activity of the homogenous catalysts have mainly focused on alternating ligands and metals.Herein,we report that the activity and stability of a PN_(P-Mo pincer complex(2)toward dinitrogen(N_(2))reduction were greatly enhanced through postmodification of the PN^(3)P pincer framework of its parent complex(1).A high ratio of NH_(3)/Mo(3525)was achieved in the presence of SmI_(2)as a reductant.In sharp contrast,1 only afforded an NH_(3)/Mo ratio of 21.Moreover,when supported by an anionic pincer ligand,2 furnished a high oxidation state Mo(V)-nitride complex via N_(2)cleavage as a plausible key intermediate in the catalytic process,suggesting a catalytic cycle that may involve different oxidation states(Ⅱ/Ⅴ)from those with 10-πelectron configuration in the literature. 展开更多
关键词 molybdenum PN^(3)P samarium(Ⅱ)iodide nitrogen reduction ligand postmodification
原文传递
Mechanistic elucidation of the role of metal oxidation states in nickel mediated electrocatalytic coupling of benzyl halides
3
作者 Pradip K.Das Priyanka Chakraborty +6 位作者 Sandeep Suryabhan Gholap Theo P.Gonçalves Changguang Yao Huaifeng Li Zhiping Lai Abdul-Hamid Emwas kuo-wei huang 《Green Synthesis and Catalysis》 2020年第2期143-149,共7页
We present the mechanistic understanding of an electrochemically-driven nickel-catalyzed coupling reaction.Computational analysis reveals that the spin density is mostly residing on the nickel(Ni)center when Ni^(II) i... We present the mechanistic understanding of an electrochemically-driven nickel-catalyzed coupling reaction.Computational analysis reveals that the spin density is mostly residing on the nickel(Ni)center when Ni^(II) is reduced to NiI.Ni-mediated halogen atom abstraction through outer-sphere electron-transfer pathway to yield coupling products under mild conditions is demonstrated.Importantly,we have elucidated the role of Ni^(I) and Ni^(0) for successive coupling of benzyl bromide and benzyl chloride derivatives,respectively,to corresponding bibenzyl products.The Ni-catalyst bearing a PN^(3) P-ligand is an effective catalyst,producing a strong ligand effect on the reactivity and selectivity for the homocoupling reactions. 展开更多
关键词 PN^(3) P pincer NICKEL Mechanism Electrocatalysis HOMOCOUPLING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部