Ni-rich lithium nickel–cobalt-manganese oxides(NCM) are considered the most promising cathode materials for lithium-ion batteries(LIBs);however, relatively poor cycling performance is a bottleneck preventing their wi...Ni-rich lithium nickel–cobalt-manganese oxides(NCM) are considered the most promising cathode materials for lithium-ion batteries(LIBs);however, relatively poor cycling performance is a bottleneck preventing their widespread use in energy systems. In this work, we propose the use of a dually functionalized surface modifier, calcium sulfate(CaSO_(4), CSO), in an efficient one step method to increase the cycling performance of Ni-rich NCM cathode materials. Thermal treatment of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode materials with a CSO precursor allows the formation of an artificial Ca-and SO_(x)-functionalized cathode–electrolyte interphase(CEI) layer on the surface of Ni-rich NCM cathode materials. The CEI layer then inhibits electrolyte decomposition at the interface between the Ni-rich NCM cathode and the electrolyte. Successful formation of the CSO-modified CEI layer is confirmed by scanning electron microscopy(SEM) and Fourier transform infrared(FTIR) spectroscopy analyses, and the process does not affect the bulk structure of the Ni-rich NCM cathode material. During cycling, the CSO-modified CEI layer remarkably decreases electrolyte decomposition upon cycling at both room temperature and 45 ℃, leading to a substantial increase in cycling retention of the cells. A cell cycled with a 0.1 CSO-modified(modified with 0.1% CSO)NCM811 cathode exhibits a specific capacity retention of90.0%, while the cell cycled with non-modified NCM811 cathode suffers from continuous fading of cycling retention(74.0%) after 100 cycles. SEM, electrochemical impedance spectroscopy(EIS), X-ray photoelectron spectroscopy(XPS), and inductively coupled plasma mass spectrometry(ICP-MS) results of the recovered electrodes demonstrate that undesired surface reactions such as electrolyte decomposition and metal dissolution are well controlled in the cell because of the artificial CSO-modified CEI layer present on the surface of Ni-rich NCM811 cathodes.展开更多
Layered lithium nickel-cobalt-manganese oxides(NCM)have been highlighted as advanced cathode materials for lithium-ion batteries(LIBs);however,their low interfacial stability must be overcome to ensure stable cycling ...Layered lithium nickel-cobalt-manganese oxides(NCM)have been highlighted as advanced cathode materials for lithium-ion batteries(LIBs);however,their low interfacial stability must be overcome to ensure stable cycling performance of the cell.In this work,we propose a one-step surface modification method that uses a task-specific precursor,N,N,N,N-tetraethylsulfamide(NTESA),to improve interfacial stability of Ni-rich NCM cathode materials.The unstable surface properties of Ni-rich NCM cathode material are improved by embedding an artificial cathode-electrolyte interphase(CEI)layer on the cathode surface by heat treatment of the Ni-rich NCM cathode material with an NTESA precursor at low temperature.Our material analyses indicate that this approach allows the formation of amine-and sulfone-functionalized CEI layers on the surface of Ni-rich NCM cathode material without changing the layered structure of the cathode material.NTESA-functionalized Ni-rich NCM cathode materials exhibit improved cycling retention after 100 cycles:for example,a cell cycled with a 3.0 NTESA-modified NCM811 cathode presents the highest retention ratio of 88.3%,whereas a cell cycled with a non-functionalized NCM811 cathode suffers from rapid fading of the cycling performance(68.4%).Our additional SEM,XPS,and EIS analyses indicate that electrolyte decomposition is suppressed during electrochemical cycling,thereby leading to smaller increases in the internal resistances.ICP-MS analyses of the cycled anodes also indicate that the NTESA-based artificial CEI layer inhibits the dissolution of transition metal components from the Ni-rich NCM cathode materials,thereby contributing to an improved overall electrochemical performance of the cell.展开更多
基金financially supported by the National Research Foundation of Korea(NRF)(Nos.NRF2019R1C1C1002249 and NRF-2017R1A6A1A06015181)the Technology Innovation Program(Nos.20010095 and 20011905)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘Ni-rich lithium nickel–cobalt-manganese oxides(NCM) are considered the most promising cathode materials for lithium-ion batteries(LIBs);however, relatively poor cycling performance is a bottleneck preventing their widespread use in energy systems. In this work, we propose the use of a dually functionalized surface modifier, calcium sulfate(CaSO_(4), CSO), in an efficient one step method to increase the cycling performance of Ni-rich NCM cathode materials. Thermal treatment of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathode materials with a CSO precursor allows the formation of an artificial Ca-and SO_(x)-functionalized cathode–electrolyte interphase(CEI) layer on the surface of Ni-rich NCM cathode materials. The CEI layer then inhibits electrolyte decomposition at the interface between the Ni-rich NCM cathode and the electrolyte. Successful formation of the CSO-modified CEI layer is confirmed by scanning electron microscopy(SEM) and Fourier transform infrared(FTIR) spectroscopy analyses, and the process does not affect the bulk structure of the Ni-rich NCM cathode material. During cycling, the CSO-modified CEI layer remarkably decreases electrolyte decomposition upon cycling at both room temperature and 45 ℃, leading to a substantial increase in cycling retention of the cells. A cell cycled with a 0.1 CSO-modified(modified with 0.1% CSO)NCM811 cathode exhibits a specific capacity retention of90.0%, while the cell cycled with non-modified NCM811 cathode suffers from continuous fading of cycling retention(74.0%) after 100 cycles. SEM, electrochemical impedance spectroscopy(EIS), X-ray photoelectron spectroscopy(XPS), and inductively coupled plasma mass spectrometry(ICP-MS) results of the recovered electrodes demonstrate that undesired surface reactions such as electrolyte decomposition and metal dissolution are well controlled in the cell because of the artificial CSO-modified CEI layer present on the surface of Ni-rich NCM811 cathodes.
基金financially supported by the National Research Foundation of Korea(NRF)(NRF-2019R1C1C1002249)the Technology Innovation Program(Nos.20010095 and 20011905)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘Layered lithium nickel-cobalt-manganese oxides(NCM)have been highlighted as advanced cathode materials for lithium-ion batteries(LIBs);however,their low interfacial stability must be overcome to ensure stable cycling performance of the cell.In this work,we propose a one-step surface modification method that uses a task-specific precursor,N,N,N,N-tetraethylsulfamide(NTESA),to improve interfacial stability of Ni-rich NCM cathode materials.The unstable surface properties of Ni-rich NCM cathode material are improved by embedding an artificial cathode-electrolyte interphase(CEI)layer on the cathode surface by heat treatment of the Ni-rich NCM cathode material with an NTESA precursor at low temperature.Our material analyses indicate that this approach allows the formation of amine-and sulfone-functionalized CEI layers on the surface of Ni-rich NCM cathode material without changing the layered structure of the cathode material.NTESA-functionalized Ni-rich NCM cathode materials exhibit improved cycling retention after 100 cycles:for example,a cell cycled with a 3.0 NTESA-modified NCM811 cathode presents the highest retention ratio of 88.3%,whereas a cell cycled with a non-functionalized NCM811 cathode suffers from rapid fading of the cycling performance(68.4%).Our additional SEM,XPS,and EIS analyses indicate that electrolyte decomposition is suppressed during electrochemical cycling,thereby leading to smaller increases in the internal resistances.ICP-MS analyses of the cycled anodes also indicate that the NTESA-based artificial CEI layer inhibits the dissolution of transition metal components from the Ni-rich NCM cathode materials,thereby contributing to an improved overall electrochemical performance of the cell.