期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Steam-Plasma Igniter for Aluminum Powder Combustion 被引量:2
1
作者 Sanghyup LEE kwanyoung noh +1 位作者 Jihwan LIM Woongsup YOON 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第5期392-401,共10页
High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high- melting-temperature oxides. A plasma torch... High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high- melting-temperature oxides. A plasma torch characterized by an ultrahigh-temperature plasma plume fulfills such high-temperature ignition conditions. A new steam plasma igniter is designed and successfully validated by aluminum power ignition and combustion tests. The steam plasma rapidly stabilizes in both plasma and steam jet modes. Parametric investigation of the steam plasma jet is conducted in terms of arc strength. A high-speed camera and an oscilloscope method visualize the discharge characteristics, and optical emission spectroscopy measures the thermochemical properties of the plasma jet. The diatomic molecule OH fitting method, the Boltzmann plot method, and short exposure capturing with an intensified charge coupled device record the axial distributions of the rotational gas temperature, excitation temperature, and OH radical distribution, respectively. The excitation temperature at the nozzle tip is near 5500 K, and the gas temperature is 5400 K. 展开更多
关键词 steam plasma igniter aluminum emission spectroscopy energetic metal fuels powder ignition and combustion optical
下载PDF
Analysis of Aluminum Dust Cloud Combustion Using Flame Emission Spectroscopy 被引量:1
2
作者 Sanghyup Lee kwanyoung noh Woongsup Yoon 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第9期2431-2438,共8页
In this study,aluminum flame analysis was researched in order to develop a measurement method for high-energy-density metal aluminum dust cloud combustion,and the flame temperature and UV-VIS-IR emission spectra were ... In this study,aluminum flame analysis was researched in order to develop a measurement method for high-energy-density metal aluminum dust cloud combustion,and the flame temperature and UV-VIS-IR emission spectra were precisely measured using a spectrometer.Because the micron-sized aluminum flame temperature was higher than 2 400 K,Flame temperature was measured by a non-contact optical technique,namely,a modified two-color method using 520 and 640nm light,as well as by apolychromatic fitting method.These methods were applied experimentally after accurate calibration.The flame temperature was identified to be higher than 2 400 Kusing both methods.By analyzing the emission spectra,we could identify AlO radicals,which occur dominantly in aluminum combustion.This study paves the way for realization of a measurement technique for aluminum dust cloud combustion flames,and it will be applied in the aluminum combustors that are in development for military purposes. 展开更多
关键词 ALUMINUM COMBUSTION FLAME characteristics High-temperature measurement EMISSION SPECTROSCOPY DIAGNOSTICS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部