We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey sp...We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces.展开更多
Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpol...Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpolation theorem,we study the spherical fractional maximal functions and the fractional maximal commutators on rearrangement-invariant quasi-Banach function spaces.In particular,we obtain the mapping properties of the spherical fractional maximal functions and the fractional maximal commutators on generalized Lorentz spaces.展开更多
This study establishes the boundedness of sublinear operators on block spaces built on Banach function spaces. These results are used to study the boundedness of the Marcinkiewicz integrals, singular integral operator...This study establishes the boundedness of sublinear operators on block spaces built on Banach function spaces. These results are used to study the boundedness of the Marcinkiewicz integrals, singular integral operators and fractional integral operators with homogeneous kernels on block-type spaces.展开更多
文摘We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces.
文摘Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpolation theorem,we study the spherical fractional maximal functions and the fractional maximal commutators on rearrangement-invariant quasi-Banach function spaces.In particular,we obtain the mapping properties of the spherical fractional maximal functions and the fractional maximal commutators on generalized Lorentz spaces.
文摘This study establishes the boundedness of sublinear operators on block spaces built on Banach function spaces. These results are used to study the boundedness of the Marcinkiewicz integrals, singular integral operators and fractional integral operators with homogeneous kernels on block-type spaces.