期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DOOB'S INEQUALITY, BURKHOLDER-GUNDY INEQUALITY AND MARTINGALE TRANSFORMS ON MARTINGALE MORREY SPACES 被引量:1
1
作者 kwok-pun ho 《Acta Mathematica Scientia》 SCIE CSCD 2018年第1期93-109,共17页
We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey sp... We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces. 展开更多
关键词 Morrey spaces Banach function space block spaces Doob's inequality Burkholder-Gundy inequality martingale transform Davis' decomposition MARTINGALE
下载PDF
A GENERALIZATION OF BOYD’S INTERPOLATION THEOREM
2
作者 kwok-pun ho 《Acta Mathematica Scientia》 SCIE CSCD 2021年第4期1263-1274,共12页
Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpol... Boyd^interpolation theorem for quasilinear operators is generalized in this paper,which gives a generalization for both the Marcinkiewicz interpolation theorem and Boyd^interpolation theorem.By using this new interpolation theorem,we study the spherical fractional maximal functions and the fractional maximal commutators on rearrangement-invariant quasi-Banach function spaces.In particular,we obtain the mapping properties of the spherical fractional maximal functions and the fractional maximal commutators on generalized Lorentz spaces. 展开更多
关键词 Interpolation of operator quasilinear operator rearrangement-invariant function space spherical fractional maximal function fractional maximal commutator generalized Lorentz space
下载PDF
Sublinear operators on block-type spaces 被引量:2
3
作者 kwok-pun ho 《Science China Mathematics》 SCIE CSCD 2020年第6期1107-1124,共18页
This study establishes the boundedness of sublinear operators on block spaces built on Banach function spaces. These results are used to study the boundedness of the Marcinkiewicz integrals, singular integral operator... This study establishes the boundedness of sublinear operators on block spaces built on Banach function spaces. These results are used to study the boundedness of the Marcinkiewicz integrals, singular integral operators and fractional integral operators with homogeneous kernels on block-type spaces. 展开更多
关键词 sublinear operator Marcinkiewicz integral fractional integral operator singular integral operator block space Morrey space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部