Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This wi...Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This will leave some imprints in the afterglows. We study the effect of equal arrival time surfaces numerically for various circumstances, i.e., isotropic fireballs, collimated jets, density jumps and energy injection events. For each case, a direct comparison is made between including and not including the effect. For isotropic fireballs and jets viewed on axis, the effect slightly hardens the spectra and postpones the peak time of the afterglows, but does not change the shapes of the spectra and light curves significantly. In the cases of a density jump or an energy injection, the effect smears out the variations in the afterglows markedly.展开更多
基金the National Natural Science Foundation of China.
文摘Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This will leave some imprints in the afterglows. We study the effect of equal arrival time surfaces numerically for various circumstances, i.e., isotropic fireballs, collimated jets, density jumps and energy injection events. For each case, a direct comparison is made between including and not including the effect. For isotropic fireballs and jets viewed on axis, the effect slightly hardens the spectra and postpones the peak time of the afterglows, but does not change the shapes of the spectra and light curves significantly. In the cases of a density jump or an energy injection, the effect smears out the variations in the afterglows markedly.