The benefits of reinforcing polyimide (PI) films with boron nitride (BN) particles and boron nitride nanosheets (BNNSs) were assessed with the aim of enhancing their thermal, optical, and mechanical properties f...The benefits of reinforcing polyimide (PI) films with boron nitride (BN) particles and boron nitride nanosheets (BNNSs) were assessed with the aim of enhancing their thermal, optical, and mechanical properties for flexible device applications. BNNSs were prepared from BN particles using a liquid-phase exfoliation method assisted by an ultrasonic probe-type sonicator and centrifugator. PI-based composite films blended with BNNSs and BN particles were fabricated at various concentrations via mechanical stirring and spin coating. The transparency of the PI/BNNS composite films remained almost the same as that of pure PI films up to 3 wt.% whereas the transparency of the PI/BN composite films decreased with increasing concentration of the BN fillers at 550 nm. The thermal stability improved significantly with increasing concentrations of both BN and BNNS relative to that of pure PI films. The temperature for 5% weight loss of the PI/BNNS composite film was higher than that of the PI/BN composite film at the same filler concentration. The composite films with 2 wt.% BN or BNNS showed the lowest wear rate, and the PI/BNNS composite films showed more stable frictional behavior compared to the PI/BN composite films. In addition, bending tests showed that the PI/BNNS composite films exhibited excellent flexibility compared to the PI/BN composite films. Overall, the results indicate that the BNNS can be effectively used as a filler that can enhance the thermal and mechanical properties of polymer materials for flexible device applications.展开更多
文摘The benefits of reinforcing polyimide (PI) films with boron nitride (BN) particles and boron nitride nanosheets (BNNSs) were assessed with the aim of enhancing their thermal, optical, and mechanical properties for flexible device applications. BNNSs were prepared from BN particles using a liquid-phase exfoliation method assisted by an ultrasonic probe-type sonicator and centrifugator. PI-based composite films blended with BNNSs and BN particles were fabricated at various concentrations via mechanical stirring and spin coating. The transparency of the PI/BNNS composite films remained almost the same as that of pure PI films up to 3 wt.% whereas the transparency of the PI/BN composite films decreased with increasing concentration of the BN fillers at 550 nm. The thermal stability improved significantly with increasing concentrations of both BN and BNNS relative to that of pure PI films. The temperature for 5% weight loss of the PI/BNNS composite film was higher than that of the PI/BN composite film at the same filler concentration. The composite films with 2 wt.% BN or BNNS showed the lowest wear rate, and the PI/BNNS composite films showed more stable frictional behavior compared to the PI/BN composite films. In addition, bending tests showed that the PI/BNNS composite films exhibited excellent flexibility compared to the PI/BN composite films. Overall, the results indicate that the BNNS can be effectively used as a filler that can enhance the thermal and mechanical properties of polymer materials for flexible device applications.