期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-Generator Discriminator Network Using Texture-Edge Information
1
作者 kyeongseok jang Seongsoo Cho Kwang Chul Son 《Computers, Materials & Continua》 SCIE EI 2023年第5期3537-3551,共15页
In the proposed paper,a parallel structure type Generative Adversarial Network(GAN)using edge and texture information is proposed.In the existing GAN-based model,many learning iterations had to be given to obtaining a... In the proposed paper,a parallel structure type Generative Adversarial Network(GAN)using edge and texture information is proposed.In the existing GAN-based model,many learning iterations had to be given to obtaining an output that was somewhat close to the original data,and noise and distortion occurred in the output image even when learning was performed.To solve this problem,the proposed model consists of two generators and three discriminators to propose a network in the form of a parallel structure.In the network,each edge information and texture information were received as inputs,learning was performed,and each character was combined and outputted through the Combine Discriminator.Through this,edge information and distortion of the output image were improved even with fewer iterations than DCGAN,which is the existing GAN-based model.As a result of learning on the network of the proposed model,a clear image with improved contour and distortion of objects in the image was output from about 50,000 iterations. 展开更多
关键词 Deep learning convolution neural network generative adversarial network edge information texture information
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部