Ground-level ozone(O_(3)) is a widespread air pollutant causing extensive injuries in plants.However,its effects on perennial energy crops remain poorly under-stood due to technical difficulties in cultivating fast-gr...Ground-level ozone(O_(3)) is a widespread air pollutant causing extensive injuries in plants.However,its effects on perennial energy crops remain poorly under-stood due to technical difficulties in cultivating fast-growing shrubs for biomass production under O_(3) treatment on the field.Here we present the results of a two-year evaluation in the framework of which willow(Salix sachalinensis F.Schmid)shrubs were exposed to ambient(AOZ)or elevated(EOZ)O_(3) in two successive growing seasons(2014,2015)and treated with 0(EDU0)or 400 mg L^(−1)(EDU400)eth-ylenediurea spray in the second growing season.In 2014,EOZ altered the chemical composition of both top young and fallen leaves,and a novel mechanism of decreasing Mg in fallen leaves while highly enriching it in young top leaves was revealed in shrubs exposed to EOZ.In 2015,EDU400 alleviated EOZ-induced decreases in leaf fresh mass to dry mass ratio(FM/DM)and leaf mass per area(LMA).While EDU400 protected against EOZ-induced suppression of the maximum rate at which leaves can fix carbon(A_(max))in O_(3)-asymptomatic leaves,it did not alle-viate EOZ-induced suppression of the maximum rates of carboxylation(VCmax)and electron transport(J_(max))and chlorophylls a,b,and a+b in the same type of leaves.In O_(3)-symptomatic leaves,however,EDU400 alleviated EOZ-induced suppression of chlorophylls a and a+b,indicating different mode of action of EDU between O_(3)-asymptomatic and O_(3)-symptomatic leaves.Extensive herbivory occurred only in AOZ-exposed plants,leading to suppressed biomass production,while EOZ also led to a similar suppression of biomass production(EDU0×EOZ vs.EDU400×EOZ).In 2016,carry-over effects were also evaluated following cropping and transplantation into new ambient plots.Effects of EOZ in the preceding growing seasons extended to the third growing season in the form of suppressed ratoon biomass production,indicating carry-over effect of EOZ.Although EDU400 protected against EOZ-induced suppression of biomass production when applied in 2015,there was no carry-over effect of EDU in the absence of EDU treatment in 2016.The results of this study provide novel mechanistic understandings of O_(3)and EDU modes of action and can enlighten cultivation of willow as energy crop.展开更多
基金supported by grant#201802 of the Japan’s Forestry and Forest Products Research Institute(FFPRI)KAKENHI grant#JP17F17102 of the Japan Society for the Promotion of Science(JSPS)+2 种基金Evgenios Agathokleous was an International Research Fellow(ID No:P17102)the JSPS,and JSPS is a non-profit,independent administrative institutionE.A acknowl-edges multi-year support from The Startup Foundation for Introducing Talent of Nanjing University of Information Science&Technology(NUIST),Nanjing,China(Grant No.003080).
文摘Ground-level ozone(O_(3)) is a widespread air pollutant causing extensive injuries in plants.However,its effects on perennial energy crops remain poorly under-stood due to technical difficulties in cultivating fast-growing shrubs for biomass production under O_(3) treatment on the field.Here we present the results of a two-year evaluation in the framework of which willow(Salix sachalinensis F.Schmid)shrubs were exposed to ambient(AOZ)or elevated(EOZ)O_(3) in two successive growing seasons(2014,2015)and treated with 0(EDU0)or 400 mg L^(−1)(EDU400)eth-ylenediurea spray in the second growing season.In 2014,EOZ altered the chemical composition of both top young and fallen leaves,and a novel mechanism of decreasing Mg in fallen leaves while highly enriching it in young top leaves was revealed in shrubs exposed to EOZ.In 2015,EDU400 alleviated EOZ-induced decreases in leaf fresh mass to dry mass ratio(FM/DM)and leaf mass per area(LMA).While EDU400 protected against EOZ-induced suppression of the maximum rate at which leaves can fix carbon(A_(max))in O_(3)-asymptomatic leaves,it did not alle-viate EOZ-induced suppression of the maximum rates of carboxylation(VCmax)and electron transport(J_(max))and chlorophylls a,b,and a+b in the same type of leaves.In O_(3)-symptomatic leaves,however,EDU400 alleviated EOZ-induced suppression of chlorophylls a and a+b,indicating different mode of action of EDU between O_(3)-asymptomatic and O_(3)-symptomatic leaves.Extensive herbivory occurred only in AOZ-exposed plants,leading to suppressed biomass production,while EOZ also led to a similar suppression of biomass production(EDU0×EOZ vs.EDU400×EOZ).In 2016,carry-over effects were also evaluated following cropping and transplantation into new ambient plots.Effects of EOZ in the preceding growing seasons extended to the third growing season in the form of suppressed ratoon biomass production,indicating carry-over effect of EOZ.Although EDU400 protected against EOZ-induced suppression of biomass production when applied in 2015,there was no carry-over effect of EDU in the absence of EDU treatment in 2016.The results of this study provide novel mechanistic understandings of O_(3)and EDU modes of action and can enlighten cultivation of willow as energy crop.