期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Occurrence of anionic redox with absence of full oxidation to Ru^(5+) in high-energy P2-type layered oxide cathode
1
作者 Jinho Ahn Hyunyoung Park +10 位作者 Wonseok Ko Yongseok Lee Jungmin Kang Seokjin Lee Sangyeop Lee Eunji Sim Kyuwook Ihm Jihyun Hong Jung-Keun Yoo kyojin ku Jongsoon Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期153-161,共9页
The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the a... The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs. 展开更多
关键词 Na-ion batteries P2-type cathode Anionic redox Local environment First-principles calculation
下载PDF
NaF-FeF2 nanocomposite: New type of Na-ion battery cathode material 被引量:1
2
作者 Insang Hwang Sung-Kyun Jung +6 位作者 Eun-Suk Jeong Hyunchul Kim Sung-Pyo Cho kyojin ku Hyungsub Kim Won-Sub Yoon Kisuk Kang 《Nano Research》 SCIE EI CAS CSCD 2017年第12期4388-4397,共10页
Na-ion batteries (NIBs) are considered one of the most attractive alternatives for Li-ion batteries (LIBs) because of the natural abundance of Na and the similarities between the NIB technology and the well-establ... Na-ion batteries (NIBs) are considered one of the most attractive alternatives for Li-ion batteries (LIBs) because of the natural abundance of Na and the similarities between the NIB technology and the well-established LIB technology. However, the discovery of high-performance electrode materials remains a key factor in the success of NIBs. Herein, we propose a new type of cathode material for NIBs based on a nanocomposite of an alkali metal fluoride (NaF) and a transition metal fluoride (FeF2). Although neither of these components is electrochemically active with Na, the nanoscale mixture of the two can deliver a reversible capacity of -125 mAh/g in the voltage range of 1.2--4.8 V vs. Na/Na+ via an Fe2+/Fe3+ redox couple. X-ray absorption spectroscopy reveals that the reversible Na storage is aided by the F-ions due to the decomposition of NaF, which are absorbed on the surface of FeF2, promoting the redox reaction of Fe and triggering the gradual transformation of the mother structure (FeF2) into a new (FeFB-like) host structure for the Na ions. This unique Na-ion storage phenomenon, which is reported for the first time, will introduce an avenue for designing novel cathode materials for NIBs. 展开更多
关键词 nanocomposite Na-ion batteries NaF FeF2 cathode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部