期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sub-2 nm mixed metal oxide for electrochemical reduction of carbon dioxide to carbon monoxide
1
作者 Devina Thasia Wijaya Andi Haryanto +2 位作者 Hyun Woo Lim kyoungsuk jin Chan Woo Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期303-310,共8页
Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction... Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface. 展开更多
关键词 Carbon dioxide reduction Mixed metal oxide NANOALLOY Carbon monoxide Metal-organic framework
下载PDF
Biomimetic Fe_(7)S_(8)/Carbon electrocatalyst from[FeFe]-Hydrogenase for improving pH-Universal electrocatalytic hydrogen production Special Collection:Aggregation-Induced Processes and Functions
2
作者 Dohun Kim Subramani Surendran +4 位作者 Sejin Im Jaehyoung Lim kyoungsuk jin Ki Tae Nam Uk Sim 《Aggregate》 EI CAS 2024年第1期451-459,共9页
Efficient and cost-effective electrocatalysts that can operate across a wide range of pH conditions are essential for green hydrogen production.Inspired by biological systems,Fe_(7)S_(8)nanoparticles incorporated on p... Efficient and cost-effective electrocatalysts that can operate across a wide range of pH conditions are essential for green hydrogen production.Inspired by biological systems,Fe_(7)S_(8)nanoparticles incorporated on polydopamine matrix electrocatalyst were synthesized by co-precipitation and annealing process.The resulting Fe_(7)S_(8)/C electrocatalyst possesses a three-dimensional structure and exhibits enhanced electrocatalytic performance for hydrogen production across various pH conditions.Notably,the Fe_(7)S_(8)/C electrocatalyst demonstrates exceptional activity,achieving low overpotentials of 90.6,45.9,and 107.4 mV in acidic,neutral,and alkaline environments,respectively.Electrochemical impedance spectroscopy reveals that Fe_(7)S_(8)/C exhibits the lowest charge transfer resistance under neutral conditions,indicating an improved proton-coupled electron transfer process.Continuous-wave electron paramagnetic resonance results confirm a change in the valence state of Fe from 3+to 1+during the hydrogen evolution reaction(HER).These findings closely resemble the behavior of natural[FeFe]-hydrogenase,known for its superior hydrogen production in neutral conditions.The remarkable performance of our Fe_(7)S_(8)/C electrocatalyst opens up new possibilities for utilizing bioinspired materials as catalysts for the HER. 展开更多
关键词 biomimetic electrocatalyst hydrogen production renewable energy
原文传递
Heteroepitaxial growth of ZnO nanosheet bands on ZnCo204 submicron rods toward high-performance Li ion battery electrodes 被引量:8
3
作者 Chan Woo Lee Seung-Deok Seo +4 位作者 Dong Wook Kim Sangbaek Park kyoungsuk jin Dong-Wan Kim Kug Sun Hong 《Nano Research》 SCIE EI CAS CSCD 2013年第5期348-355,共8页
We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimension... We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierar- chical self-supported nanostructures are composed of one-dimensional (1D) ZnCo204 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo204 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo204 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (-900 mA.h.g-1 at a rate of 45 mA.h.g-1) for Li ion battery electrodes. 展开更多
关键词 ZnCo204 submicron rods ZnO nanosheets hierarchicalheterostructure ammonia-evaporation-induced method Li ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部