Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction...Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface.展开更多
Efficient and cost-effective electrocatalysts that can operate across a wide range of pH conditions are essential for green hydrogen production.Inspired by biological systems,Fe_(7)S_(8)nanoparticles incorporated on p...Efficient and cost-effective electrocatalysts that can operate across a wide range of pH conditions are essential for green hydrogen production.Inspired by biological systems,Fe_(7)S_(8)nanoparticles incorporated on polydopamine matrix electrocatalyst were synthesized by co-precipitation and annealing process.The resulting Fe_(7)S_(8)/C electrocatalyst possesses a three-dimensional structure and exhibits enhanced electrocatalytic performance for hydrogen production across various pH conditions.Notably,the Fe_(7)S_(8)/C electrocatalyst demonstrates exceptional activity,achieving low overpotentials of 90.6,45.9,and 107.4 mV in acidic,neutral,and alkaline environments,respectively.Electrochemical impedance spectroscopy reveals that Fe_(7)S_(8)/C exhibits the lowest charge transfer resistance under neutral conditions,indicating an improved proton-coupled electron transfer process.Continuous-wave electron paramagnetic resonance results confirm a change in the valence state of Fe from 3+to 1+during the hydrogen evolution reaction(HER).These findings closely resemble the behavior of natural[FeFe]-hydrogenase,known for its superior hydrogen production in neutral conditions.The remarkable performance of our Fe_(7)S_(8)/C electrocatalyst opens up new possibilities for utilizing bioinspired materials as catalysts for the HER.展开更多
We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimension...We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierar- chical self-supported nanostructures are composed of one-dimensional (1D) ZnCo204 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo204 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo204 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (-900 mA.h.g-1 at a rate of 45 mA.h.g-1) for Li ion battery electrodes.展开更多
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (RS-2023-00210114)supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C1004264 and NRF2021R1A4A1032114)+1 种基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (NRF-2022R1A4A1019296)supported by the National R&D Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2021M3D1A2051636)。
文摘Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface.
基金Outsourced R&D Project of Korea Electric Power Corporation(KEPCO),Grant/Award Number:R23XO04National Research Foundation of Korea(NRF)+7 种基金Korean government(MSIT),Grant/Award Numbers:NRF-2021M3H4A6A01045764,2020M3H4A3106313,2021R1C1C1004264,2021R1A4A1032114Korea Institute for Advancement of Technology(KIAT)Ministry of Trade,Industry,and Energy(MOTIE),Korea,Grant/Award Number:P0025273Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea,Grant/Award Number:20224000000320KENTECH Research GrantKorea Institute of Energy Technology,Republic of Korea,Grant/Award Number:KRG2022-01-016Regional Innovation Strategy(RIS)through the National Research Foundation of Korea(NRF)Ministry of Education(MOE),Grant/Award Number:2021RIS-002。
文摘Efficient and cost-effective electrocatalysts that can operate across a wide range of pH conditions are essential for green hydrogen production.Inspired by biological systems,Fe_(7)S_(8)nanoparticles incorporated on polydopamine matrix electrocatalyst were synthesized by co-precipitation and annealing process.The resulting Fe_(7)S_(8)/C electrocatalyst possesses a three-dimensional structure and exhibits enhanced electrocatalytic performance for hydrogen production across various pH conditions.Notably,the Fe_(7)S_(8)/C electrocatalyst demonstrates exceptional activity,achieving low overpotentials of 90.6,45.9,and 107.4 mV in acidic,neutral,and alkaline environments,respectively.Electrochemical impedance spectroscopy reveals that Fe_(7)S_(8)/C exhibits the lowest charge transfer resistance under neutral conditions,indicating an improved proton-coupled electron transfer process.Continuous-wave electron paramagnetic resonance results confirm a change in the valence state of Fe from 3+to 1+during the hydrogen evolution reaction(HER).These findings closely resemble the behavior of natural[FeFe]-hydrogenase,known for its superior hydrogen production in neutral conditions.The remarkable performance of our Fe_(7)S_(8)/C electrocatalyst opens up new possibilities for utilizing bioinspired materials as catalysts for the HER.
文摘We report the direct synthesis of ZnC0204 and ZnO/ZnC0204 submicron rod arrays grown on Ni foil current collectors via an ammonia-evaporation-induced method by controlling the ratio of Zn to Co. These three-dimensional (3D) hierar- chical self-supported nanostructures are composed of one-dimensional (1D) ZnCo204 rods and two-dimensional (2D) ZnO nanosheet bands perpendicular to the axis of the each ZnCo204 rod. We carefully deal with the heteroepitaxial growth mechanisms of hexagonal ZnO nanosheets from a crystallographic point of view. Furthermore, we demonstrate the ability of these high-surface-area ZnO/ZnCo204 heterostructured rods to enable improved electrolyte permeability and Li ion transfer, thereby enhancing their Li storage capability (-900 mA.h.g-1 at a rate of 45 mA.h.g-1) for Li ion battery electrodes.