期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network
1
作者 kyungsuk jang Gun Jin Yun 《Computers, Materials & Continua》 SCIE EI 2021年第2期1091-1120,共30页
This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure c... This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively. 展开更多
关键词 Data-driven modeling deep learning neural networks genetic programming anisotropic failure criterion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部