期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Stability case study of the ACROBOTER underactuated service robot
1
作者 szló l.Kovács lászló bencsik 《Theoretical & Applied Mechanics Letters》 CAS 2012年第4期27-33,共7页
The dynamics of classical robotic systems are usually described by ordinary differential equations via selecting a minimum set of independent generalized coordinates. However, different parameterizations and the use o... The dynamics of classical robotic systems are usually described by ordinary differential equations via selecting a minimum set of independent generalized coordinates. However, different parameterizations and the use of a nonminimum set of (dependent) generalized coordinates can be advantageous in such cases when the modeled device contains closed kinematic loops and/or it has a complex structure. On one hand, the use of dependent coordinates, like natural coordinates, leads to a different mathematical representation where the equations of motion are given in the form of differential algebraic equations. On the other hand, the control design of underactuated robots usually relies on partial feedback linearization based techniques which are exclusively developed for systems modeled by independent coordinates. In this paper we propose a different control algorithm formulated by using dependent coordinates. The applied computed torque controller is realized via introducing actuator constraints that complement the kinematic constraints which are used to describe the dynamics of the investigated service robotic system in relatively simple and compact form. The proposed controller is applied to the computed torque control of the planar model of the ACROBOTER service robot. The stability analysis of the digitally controlled underactuated service robot is provided as a real parameter case study for selecting the optimal control gains. 展开更多
关键词 STABILITY underactuation natural coordinates control constraints
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部