A labeled graph is an ordered pair (G, L) consisting of a graph G and its labeling L : V(G) → {1,2 ,n}, where n = |V(G)|. An increasing nonconsecutive path in a labeled graph (G,L) is either a path (u1,u2...A labeled graph is an ordered pair (G, L) consisting of a graph G and its labeling L : V(G) → {1,2 ,n}, where n = |V(G)|. An increasing nonconsecutive path in a labeled graph (G,L) is either a path (u1,u2 uk) (k ≥ 2) in G such that L(u,) + 2 ≤ L(ui+1) for all i = 1, 2, ..., k- 1 or a path of order 1. The total number of increasing nonconsecutive paths in (G, L) is denoted by d(G, L). A labeling L is optimal if the labeling L produces the largest d(G, L). In this paper, a method simpler than that in Zverovich (2004) to obtain the optimal labeling of path is given. The optimal labeling of other special graphs such as cycles and stars is obtained.展开更多
基金Supported in part by the NNSF of China(10301010,60673048)Science and Technology Commission of Shanghai Municipality(04JC14031).
文摘A labeled graph is an ordered pair (G, L) consisting of a graph G and its labeling L : V(G) → {1,2 ,n}, where n = |V(G)|. An increasing nonconsecutive path in a labeled graph (G,L) is either a path (u1,u2 uk) (k ≥ 2) in G such that L(u,) + 2 ≤ L(ui+1) for all i = 1, 2, ..., k- 1 or a path of order 1. The total number of increasing nonconsecutive paths in (G, L) is denoted by d(G, L). A labeling L is optimal if the labeling L produces the largest d(G, L). In this paper, a method simpler than that in Zverovich (2004) to obtain the optimal labeling of path is given. The optimal labeling of other special graphs such as cycles and stars is obtained.